96 research outputs found
Probabilistic Graphical Models for Credibility Analysis in Evolving Online Communities
One of the major hurdles preventing the full exploitation of information from
online communities is the widespread concern regarding the quality and
credibility of user-contributed content. Prior works in this domain operate on
a static snapshot of the community, making strong assumptions about the
structure of the data (e.g., relational tables), or consider only shallow
features for text classification.
To address the above limitations, we propose probabilistic graphical models
that can leverage the joint interplay between multiple factors in online
communities --- like user interactions, community dynamics, and textual content
--- to automatically assess the credibility of user-contributed online content,
and the expertise of users and their evolution with user-interpretable
explanation. To this end, we devise new models based on Conditional Random
Fields for different settings like incorporating partial expert knowledge for
semi-supervised learning, and handling discrete labels as well as numeric
ratings for fine-grained analysis. This enables applications such as extracting
reliable side-effects of drugs from user-contributed posts in healthforums, and
identifying credible content in news communities.
Online communities are dynamic, as users join and leave, adapt to evolving
trends, and mature over time. To capture this dynamics, we propose generative
models based on Hidden Markov Model, Latent Dirichlet Allocation, and Brownian
Motion to trace the continuous evolution of user expertise and their language
model over time. This allows us to identify expert users and credible content
jointly over time, improving state-of-the-art recommender systems by explicitly
considering the maturity of users. This also enables applications such as
identifying helpful product reviews, and detecting fake and anomalous reviews
with limited information.Comment: PhD thesis, Mar 201
Exploring Latent Semantic Factors to Find Useful Product Reviews
Online reviews provided by consumers are a valuable asset for e-Commerce
platforms, influencing potential consumers in making purchasing decisions.
However, these reviews are of varying quality, with the useful ones buried deep
within a heap of non-informative reviews. In this work, we attempt to
automatically identify review quality in terms of its helpfulness to the end
consumers. In contrast to previous works in this domain exploiting a variety of
syntactic and community-level features, we delve deep into the semantics of
reviews as to what makes them useful, providing interpretable explanation for
the same. We identify a set of consistency and semantic factors, all from the
text, ratings, and timestamps of user-generated reviews, making our approach
generalizable across all communities and domains. We explore review semantics
in terms of several latent factors like the expertise of its author, his
judgment about the fine-grained facets of the underlying product, and his
writing style. These are cast into a Hidden Markov Model -- Latent Dirichlet
Allocation (HMM-LDA) based model to jointly infer: (i) reviewer expertise, (ii)
item facets, and (iii) review helpfulness. Large-scale experiments on five
real-world datasets from Amazon show significant improvement over
state-of-the-art baselines in predicting and ranking useful reviews
Item Recommendation with Evolving User Preferences and Experience
Current recommender systems exploit user and item similarities by
collaborative filtering. Some advanced methods also consider the temporal
evolution of item ratings as a global background process. However, all prior
methods disregard the individual evolution of a user's experience level and how
this is expressed in the user's writing in a review community. In this paper,
we model the joint evolution of user experience, interest in specific item
facets, writing style, and rating behavior. This way we can generate individual
recommendations that take into account the user's maturity level (e.g.,
recommending art movies rather than blockbusters for a cinematography expert).
As only item ratings and review texts are observables, we capture the user's
experience and interests in a latent model learned from her reviews, vocabulary
and writing style. We develop a generative HMM-LDA model to trace user
evolution, where the Hidden Markov Model (HMM) traces her latent experience
progressing over time -- with solely user reviews and ratings as observables
over time. The facets of a user's interest are drawn from a Latent Dirichlet
Allocation (LDA) model derived from her reviews, as a function of her (again
latent) experience level. In experiments with five real-world datasets, we show
that our model improves the rating prediction over state-of-the-art baselines,
by a substantial margin. We also show, in a use-case study, that our model
performs well in the assessment of user experience levels
Phase transitions of extremal cuts for the configuration model
The -section width and the Max-Cut for the configuration model are shown
to exhibit phase transitions according to the values of certain parameters of
the asymptotic degree distribution. These transitions mirror those observed on
Erd\H{o}s-R\'enyi random graphs, established by Luczak and McDiarmid (2001),
and Coppersmith et al. (2004), respectively
- …