28 research outputs found
Psychology of Fragrance Use: Perception of Individual Odor and Perfume Blends Reveals a Mechanism for Idiosyncratic Effects on Fragrance Choice
Cross-culturally, fragrances are used to modulate body odor, but the psychology of fragrance choice has been largely overlooked. The prevalent view is that fragrances mask an individual's body odor and improve its pleasantness. In two experiments, we found positive effects of perfume on body odor perception. Importantly, however, this was modulated by significant interactions with individual odor donors. Fragrances thus appear to interact with body odor, creating an individually-specific odor mixture. In a third experiment, the odor mixture of an individual's body odor and their preferred perfume was perceived as more pleasant than a blend of the same body odor with a randomly-allocated perfume, even when there was no difference in pleasantness between the perfumes. This indicates that fragrance use extends beyond simple masking effects and that people choose perfumes that interact well with their own odor. Our results provide an explanation for the highly individual nature of perfume choice
The Phrenic Component of Acute Schizophrenia – A Name and Its Physiological Reality
Decreased heart rate variability (HRV) was shown for unmedicated patients with schizophrenia and their first-degree relatives, implying genetic associations. This is known to be an important risk factor for increased cardiac mortality in other diseases. The interaction of cardio-respiratory function and respiratory physiology has never been investigated in the disease although it might be closely related to the pattern of autonomic dysfunction. We hypothesized that increased breathing rates and reduced cardio-respiratory coupling in patients with acute schizophrenia would be associated with low vagal function. We assessed variability of breathing rates and depth, HRV and cardio-respiratory coupling in patients, their first-degree relatives and controls at rest. Control subjects were investigated a second time by means of a stress task to identify stress-related changes of cardio-respiratory function. A total of 73 subjects were investigated, consisting of 23 unmedicated patients, 20 healthy, first-degree relatives and 30 control subjects matched for age, gender, smoking and physical fitness. The LifeShirt®, a multi-function ambulatory device, was used for data recording (30 minutes). Patients breathe significantly faster (p<.001) and shallower (p<.001) than controls most pronouncedly during exhalation. Patients' breathing is characterized by a significantly increased amount of middle- (p<.001), high- (p<.001), and very high frequency fluctuations (p<.001). These measures correlated positively with positive symptoms as assessed by the PANSS scale (e.g., middle frequency: r = 521; p<.01). Cardio-respiratory coupling was reduced in patients only, while HRV was decreased in patients and healthy relatives in comparison to controls. Respiratory alterations might reflect arousal in acutely ill patients, which is supported by comparable physiological changes in healthy subjects during stress. Future research needs to further investigate these findings with respect to their physiological consequences for patients. These results are invaluable for researchers studying changes of biological signals prone to the influence of breathing rate and rhythm (e.g., functional imaging)
Autonomic Modulation and Health-Related Quality of Life among Schizophrenic Patients Treated with Non-Intensive Case Management
Schizophrenia is associated with autonomic dysfunction and this may increase cardiovascular mortality. Past studies on autonomic modulation of schizophrenic patients focused on inpatients rather than individuals in a community setting, especially those receiving non-intensive case management (non-ICM). Besides, autonomic modulation and its association with health-related quality of life (HRQoL) in this population remain unexplored.A total of 25 schizophrenic patients treated by non-ICM and 40 healthy volunteers were matched by age, gender and body mass index; smokers were excluded. Between the two groups, we compared the individuals' 5 min resting assessments of heart rate variability and their HRQoL, which was measured using EuroQoL-5D (EQ-5D). Patients with schizophrenia were assessed for psychopathology using the Positive and Negative Syndrome Scale for Schizophrenia (PANSS). We examined the relationship between heart rate variability measurements, HRQoL scores, PANSS scores, and other clinical variables among the schizophrenic patients treated by non-ICM.Compared to the controls, patients with schizophrenia showed a significant impairment of autonomic modulation and a worse HRQoL. Cardiovagal dysfunction among the schizophrenic patients could be predicted independently based on lower educational level and more negative symptoms. Sympathetic predominance was directly associated with anticholinergics use and EQ-5D using a visual analogue scale (EQ-VAS).Patients with schizophrenia treated by non-ICM show a significant impairment of their autonomic function and HRQoL compared to the controls. Since the sympathovagal dysfunction is associated with more negative symptoms or higher VAS score, the treatment of the negative symptoms as well as the monitoring of HRQoL might help to manage cardiovascular risk among these individuals. In addition, EQ-VAS scores must be interpreted more cautiously in such a population
Processing of Body Odor Signals by the Human Brain
Brain development in mammals has been proposed to be promoted by successful adaptations to the social complexity as well as to the social and non-social chemical environment. Therefore, the communication via chemosensory signals might have been and might still be a phylogenetically ancient communication channel transmitting evolutionary significant information. In humans, the neuronal underpinnings of the processing of social chemosignals have been investigated in relation to kin recognition, mate choice, the reproductive state and emotional contagion. These studies reveal that human chemosignals are probably not processed within olfactory brain areas but through neuronal relays responsible for the processing of social information. It is concluded that the processing of human social chemosignals resembles the processing of social signals originating from other modalities, except that human social chemosignals are usually communicated without the allocation of attentional resources, that is below the threshold of consciousness. Deviances in the processing of human social chemosignals might be related to the development and maintenance of mental disorders
Multiple kernel learning captures a systems-level functional connectivity biomarker signature in amyotrophic lateral sclerosis
There is significant clinical and prognostic heterogeneity in the neurodegenerative disorder amyotrophic lateral sclerosis (ALS), despite a common immunohistological signature. Consistent extra-motor as well as motor cerebral, spinal anterior horn and distal neuromuscular junction pathology supports the notion of ALS a system failure. Establishing a disease biomarker is a priority but a simplistic, coordinate-based approach to brain dysfunction using MRI is not tenable. Resting-state functional MRI reflects the organization of brain networks at the systems-level, and so changes in of motor functional connectivity were explored to determine their potential as the substrate for a biomarker signature. Intra- as well as inter-motor functional networks in the 0.03–0.06 Hz frequency band were derived from 40 patients and 30 healthy controls of similar age, and used as features for pattern detection, employing multiple kernel learning. This approach enabled an accurate classification of a group of patients that included a range of clinical sub-types. An average of 13 regions-of-interest were needed to reach peak discrimination. Subsequent analysis revealed that the alterations in motor functional connectivity were widespread, including regions not obviously clinically affected such as the cerebellum and basal ganglia. Complex network analysis showed that functional networks in ALS differ markedly in their topology, reflecting the underlying altered functional connectivity pattern seen in patients: 1) reduced connectivity of both the cortical and sub-cortical motor areas with non motor areas 2)reduced subcortical-cortical motor connectivity and 3) increased connectivity observed within sub-cortical motor networks. This type of analysis has potential to non-invasively define a biomarker signature at the systems-level. As the understanding of neurodegenerative disorders moves towards studying pre-symptomatic changes, there is potential for this type of approach to generate biomarkers for the testing of neuroprotective strategies
Recommended from our members
Diet modulates brain network stability, a biomarker for brain aging, in young adults
Epidemiological studies suggest that insulin resistance accelerates progression of age-based cognitive impairment, which neuroimaging has linked to brain glucose hypometabolism. As cellular inputs, ketones increase Gibbs free energy change for ATP by 27% compared to glucose. Here we test whether dietary changes are capable of modulating sustained functional communication between brain regions (network stability) by changing their predominant dietary fuel from glucose to ketones. We first established network stability as a biomarker for brain aging using two large-scale (n = 292, ages 20 to 85 y; n = 636, ages 18 to 88 y) 3 T functional MRI (fMRI) datasets. To determine whether diet can influence brain network stability, we additionally scanned 42 adults, age < 50 y, using ultrahigh-field (7 T) ultrafast (802 ms) fMRI optimized for single-participant-level detection sensitivity. One cohort was scanned under standard diet, overnight fasting, and ketogenic diet conditions. To isolate the impact of fuel type, an independent overnight fasted cohort was scanned before and after administration of a calorie-matched glucose and exogenous ketone ester (D-β-hydroxybutyrate) bolus. Across the life span, brain network destabilization correlated with decreased brain activity and cognitive acuity. Effects emerged at 47 y, with the most rapid degeneration occurring at 60 y. Networks were destabilized by glucose and stabilized by ketones, irrespective of whether ketosis was achieved with a ketogenic diet or exogenous ketone ester. Together, our results suggest that brain network destabilization may reflect early signs of hypometabolism, associated with dementia. Dietary interventions resulting in ketone utilization increase available energy and thus may show potential in protecting the aging brain