1,465 research outputs found
Large Deviations of the Smallest Eigenvalue of the Wishart-Laguerre Ensemble
We consider the large deviations of the smallest eigenvalue of the
Wishart-Laguerre Ensemble. Using the Coulomb gas picture we obtain rate
functions for the large fluctuations to the left and the right of the hard
edge. Our findings are compared with known exact results for finding
good agreement. We also consider the case of almost square matrices finding new
universal rate functions describing large fluctuations.Comment: 4 pages, 2 figure
Magnetic field tuning of coplanar waveguide resonators
We describe measurements on microwave coplanar resonators designed for
quantum bit experiments. Resonators have been patterned onto sapphire and
silicon substrates, and quality factors in excess of a million have been
observed. The resonant frequency shows a high sensitivity to magnetic field
applied perpendicular to the plane of the film, with a quadratic dependence for
the fundamental, second and third harmonics. Frequency shift of hundreds of
linewidths can be obtained.Comment: Accepted for publication in AP
On the properties of superconducting planar resonators at mK temperatures
Planar superconducting resonators are now being increasingly used at mK
temperatures in a number of novel applications. They are also interesting
devices in their own right since they allow us to probe the properties of both
the superconductor and its environment. We have experimentally investigated
three types of niobium resonators - including a lumped element design -
fabricated on sapphire and SiO_2/Si substrates. They all exhibit a non-trivial
temperature dependence of their centre frequency and quality factor. Our
results shed new light on the interaction between the electromagnetic waves in
the resonator and two-level fluctuators in the substrate.Comment: V2 includes some minor corrections/changes. Submitted to PR
Externally Dispersed Interferometry for Precision Radial Velocimetry
Externally Dispersed Interferometry (EDI) is the series combination of a
fixed-delay field-widened Michelson interferometer with a dispersive
spectrograph. This combination boosts the spectrograph performance for both
Doppler velocimetry and high resolution spectroscopy. The interferometer
creates a periodic spectral comb that multiplies against the input spectrum to
create moire fringes, which are recorded in combination with the regular
spectrum. The moire pattern shifts in phase in response to a Doppler shift.
Moire patterns are broader than the underlying spectral features and more
easily survive spectrograph blurring and common distortions. Thus, the EDI
technique allows lower resolution spectrographs having relaxed optical
tolerances (and therefore higher throughput) to return high precision velocity
measurements, which otherwise would be imprecise for the spectrograph alone.Comment: 7 Pages, White paper submitted to the AAAC Exoplanet Task Forc
Dramatic robustness of a multiple delay dispersed interferometer to spectrograph errors: how mixing delays reduces or cancels wavelength drift
We describe demonstrations of remarkable robustness to instrumental noises by using a multiple delay externally dispersed interferometer (EDI) on stellar observations at the Hale telescope. Previous observatory EDI demonstrations used a single delay. The EDI (also called “TEDI”) boosted the 2,700 resolution of the native TripleSpec NIR spectrograph (950-2450 nm) by as much as 10x to 27,000, using 7 overlapping delays up to 3 cm. We observed superb rejection of fixed pattern noises due to bad pixels, since the fringing signal responds only to changes in multiple exposures synchronous to the applied delay dithering. Remarkably, we observed a ~20x reduction of reaction in the output spectrum to PSF shifts of the native spectrograph along the dispersion direction, using our standard processing. This allowed high resolution observations under conditions of severe and irregular PSF drift otherwise not possible without the interferometer. Furthermore, we recently discovered an improved method of weighting and mixing data between pairs of delays that can theoretically further reduce the net reaction to PSF drift to zero. We demonstrate a 350x reduction in reaction to a native PSF shift using a simple simulation. This technique could similarly reduce radial velocity noise for future EDI’s that use two delays overlapped in delay space (or a single delay overlapping the native peak). Finally, we show an extremely high dynamic range EDI measurement of our ThAr lamp compared to a literature ThAr spectrum, observing weak features (~0.001x height of nearest strong line) that occur between the major lines. Because of individuality of each reference lamp, accurate knowledge of its spectrum between the (unfortunately) sparse major lines is important for precision radial velocimetry
Circuit QED with a Flux Qubit Strongly Coupled to a Coplanar Transmission Line Resonator
We propose a scheme for circuit quantum electrodynamics with a
superconducting flux-qubit coupled to a high-Q coplanar resonator. Assuming
realistic circuit parameters we predict that it is possible to reach the strong
coupling regime. Routes to metrological applications, such as single photon
generation and quantum non-demolition measurements are discussed.Comment: 8 pages, 5 figure
A physically motivated and empirically calibrated method to measure effective temperature, metallicity, and Ti abundance of M dwarfs
The ability to perform detailed chemical analysis of Sun-like F-, G-, and
K-type stars is a powerful tool with many applications including studying the
chemical evolution of the Galaxy and constraining planet formation theories.
Unfortunately, complications in modeling cooler stellar atmospheres hinders
similar analysis of M-dwarf stars. Empirically-calibrated methods to measure M
dwarf metallicity from moderate-resolution spectra are currently limited to
measuring overall metallicity and rely on astrophysical abundance correlations
in stellar populations. We present a new, empirical calibration of synthetic M
dwarf spectra that can be used to infer effective temperature, Fe abundance,
and Ti abundance. We obtained high-resolution (R~25,000), Y-band (~1 micron)
spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar
atmosphere modeling code (version 15.5), we generated a grid of synthetic
spectra covering a range of temperatures, metallicities, and
alpha-enhancements. From our observed and synthetic spectra, we measured the
equivalent widths of multiple Fe I and Ti I lines and a temperature-sensitive
index based on the FeH bandhead. We used abundances measured from
widely-separated solar-type companions to empirically calibrate transformations
to the observed indices and equivalent widths that force agreement with the
models. Our calibration achieves precisions in Teff, [Fe/H], and [Ti/Fe] of 60
K, 0.1 dex, and 0.05 dex, respectively and is calibrated for 3200 K < Teff <
4100 K, -0.7 < [Fe/H] < +0.3, and -0.05 < [Ti/Fe] < +0.3. This work is a step
toward detailed chemical analysis of M dwarfs at a similar precision achieved
for FGK stars.Comment: accepted for publication in ApJ, all synthetic spectra available at
http://people.bu.edu/mveyette/phoenix
Anatomy of the long head of biceps femoris: An ultrasound study
Hamstring strains, particularly involving the long head of biceps femoris (BFlh) at the proximal musculotendinous junction (MTJ), are commonly experienced by athletes. With the use of diagnostic ultrasound increasing, an in-depth knowledge of normal ultrasonographic anatomy is fundamental to better understanding hamstring strain. The aim of this study was to describe the architecture of BFlh, using ultrasonography, in young men and cadaver specimens. BFlh morphology was examined in 19 healthy male participants (mean age 21.6 years) using ultrasound. Muscle, tendon and MTJ lengths were recorded and architectural parameters assessed at four standardised points along the muscle. Measurement accuracy was validated by ultrasound and dissection of BFlh in six male cadaver lower limbs (mean age 76 years). Intra-rater reliability of architectural parameters was examined for repeat scans, image analysis and dissection measurements. Distally the BFlh muscle had significantly (P
Properties of nonaqueous electrolytes Sixth summary report, 20 Sep. 1967 - 19 Mar. 1968
Physical properties and structural studies on propylene carbonate, dimethyl formamide, and acetonitrile solvent electrolyte
The Interconnected Magmatic Plumbing System of the Natron Rift
Understanding the magmatic plumbing system of rift volcanoes is essential when examining the
interplay between magmatic and tectonic forces. Recent seismicity, volcanic activity, magma emplacement,
and volatile release make the Natron basin the ideal location to study these processes in the East African
Rift System. Here, we present the first high-resolution tomographic imaging of Oldoinyo Lengai volcano
and surrounding volcanic systems using attenuation mapping. High scattering and absorption features reveal
fluid-filled fracture networks below regions of magmatic volatile release at the surface and a close spatial
association between carbonatite volcanism and deeply penetrating, fluid-filled faults. High-absorption features
appear sensitive to fluids and thermal gradients, revealing a central sill complex and connected plumbing
system down to the mid-crust, which links volcanoes and rift segments across the developing magmatic rift
- …