1,258 research outputs found
A minimum hypothesis explanation for an IMF with a lognormal body and power law tail
We present a minimum hypothesis model for an IMF that resembles a lognormal
distribution at low masses but has a distinct power-law tail. Even if the
central limit theorem ensures a lognormal distribution of condensation masses
at birth, a power-law tail in the distribution arises due to accretion from the
ambient cloud, coupled with a non-uniform (exponential) distribution of
accretion times.Comment: 2 pages, 1 figure, to appear in IMF@50, eds. E. Corbelli, F. Palla,
and H. Zinnecker, Kluwer, Astrophysics and Space Science Librar
The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure
In this paper we present the results of a systematic investigation of an
entire population of starless dust cores within a single molecular cloud.
Analysis of extinction data shows the cores to be dense objects characterized
by a narrow range of density. Analysis of C18O and NH3 molecular-line
observations reveals very narrow lines. The non-thermal velocity dispersions
measured in both these tracers are found to be subsonic for the large majority
of the cores and show no correlation with core mass (or size). Thermal pressure
is thus the dominate source of internal gas pressure and support for most of
the core population. The total internal gas pressures of the cores are found to
be roughly independent of core mass over the entire range of the core mass
function (CMF) indicating that the cores are in pressure equilibrium with an
external source of pressure. This external pressure is most likely provided by
the weight of the surrounding Pipe cloud within which the cores are embedded.
Most of the cores appear to be pressure confined, gravitationally unbound
entities whose nature, structure and future evolution are determined by only a
few physical factors which include self-gravity, the fundamental processes of
thermal physics and the simple requirement of pressure equilibrium with the
surrounding environment. The observed core properties likely constitute the
initial conditions for star formation in dense gas. The entire core population
is found to be characterized by a single critical Bonnor-Ebert mass. This mass
coincides with the characteristic mass of the Pipe CMF indicating that most
cores formed in the cloud are near critical stability. This suggests that the
mass function of cores (and the IMF) has its origin in the physical process of
thermal fragmentation in a pressurized medium.Comment: To appear in the Astrophysical Journa
Embedded Clusters and the IMF
Despite valiant efforts over nearly five decades, attempts to determine the
IMF over a complete mass range for galactic field stars and in open clusters
have proved difficult. Infrared imaging observations of extremely young
embedded clusters coupled with Monte Carlo modeling of their luminosity
functions are improving this situation and providing important new
contributions to our fundamental knowledge of the IMF and its universality in
both space and time.Comment: 6 pages, 2 figures to appear in "The IMF@50", Kluwer Academic Press,
eds. C. Corbelli, F. Palla, & Hans Zinnecke
Recommended from our members
The ADS All-Sky Survey
The ADS All-Sky Survey (ADSASS) is an ongoing effort aimed at turning the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource for astronomers, into a data resource. The ADS is not a data repository per se, but it implicitly contains valuable holdings of astronomical data, in the form of images, tables and object references contained within articles. The objective of the ADSASS effort is to extract these data and make them discoverable and available through existing data viewers. The resulting ADSASS data layer promises to greatly enhance workflows and enable new research by tying astronomical literature and data assets into one resource.Astronom
Young Brown Dwarfs in the Core of the W3 Main Star-Forming Region
We present the results of deep and high-resolution (FWHM ~ 0".35) JHK NIR
observations with the Subaru telescope, to search for very low mass young
stellar objects (YSOs) in the W3 Main star-forming region. The NIR survey
covers an area of ~ 2.6 arcmin^2 with 10-sigma limiting magnitude exceeding 20
mag in the JHK bands. The survey is sensitive enough to provide unprecedented
details in W3 IRS 5 region and reveals a census of the stellar population down
to objects below the hydrogen-burning limit. We construct JHK color-color (CC)
and J-H/J and H-K/K color-magnitude (CM) diagrams to identify very low
luminosity YSOs and to estimate their masses. Based on these CC and CM
diagrams, we identified a rich population of embedded YSO candidates with
infrared excesses (Class I and Class II), associated with the W3 Main region. A
large number of red sources (H-K > 2) have also been detected around W3 Main.
We argue that these red stars are most probably pre-main-sequence (PMS) stars
with intrinsic color excesses. Based on the comparison between theoretical
evolutionary models of very low-mass PMS objects with the observed CM diagram,
we find there exists a substantial substellar population in the observed
region. The mass function (MF) does not show the presence of cutoff and sharp
turnover around the substellar limit, at least at the hydrogen-burning limit.
Furthermore, the MF slope indicates that the number ratio of young brown dwarfs
and hydrogen-burning stars in the W3 Main is probably higher than those in
Trapezium and IC 348. The presence of mass segregation, in the sense that
relatively massive YSOs lie near the cluster center, is seen. The estimated
dynamical evolution time indicates that the observed mass segregation in the W3
Main may be the imprint of the star formation process.Comment: 39 pages, 15 figures. Accepted for publication in the Astrophysical
Journa
- …