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TESTS I--OR STRUCTURAL CHANGE AND PREDICTION

INTERVALS FOR THE REDUCED FORMS OF TWO STRUCTIIRAI

~vl()DELS OF THE U.S.: THE FRB-MIT AND MICHIGAN

QUARTERLY MODELS

By T. MUE:"ol, A. ROLNICK. N. WALLAcr AND W. WULER*

Pr"dice;oll jll/er/"(/lcDc~; are IIpplied 10 cll" r("duenl forllls of CII·" ,/ullrc"rI.\" lIIodd., (// cll<· u.s. (cll<· ··old··
FRB-M / T //Jodel lind clle .\fj("higoll//Jodel). The rnll/cs iil".,cro!e che rallg" oj I£'.IC.\ 0I1i' ("(/11 p('rjiJr/n Oil 0/1

ncillwced sillllllt'/11("()u.' '·'lllIIciol/lllodel. In pllrcku/or. Ih" II'.\CS deC'lrm;/l(· II'h,·1/11'r ex pmc '/or("('lIsl ("frt!rs
UUl be ollribllli"d '" scrucrllml ,!tjici"tlci,·, at' I/:e lIIot/cis. Til" pop("r ,·Xi/lllill("\ ((//!jidell("e /"("xiom otld ocher
IIspec/.S or -'("emsc dhcrinucio/!s· ("ompllrj.\OIls b.·CII·e.·'1 m"all {ora·ascs lItul /l(l/lscoc!wsci(" {or('nws.

nl/1lporisolls b"/lI'''''/! .!ilre("(/S! {"IITialle("s Fom mull/period elldoi.·/!olls s;mll/oc;ort; alul 111".1(" jrom o/!("
pI'I"io'/ .\illlllitl/iilll.l. IItid ("olllporiso)i.\ h('/\\'("(,Il {ore("usl writmln (//1<1 r('sidllll/I;oriwi("n.

1. INTRODVCTlO:\

In this paper we report the results of statistical tests for a variety of structural
change ill the cocfticients of two quarterly models of the U.S. economy: the "old"'
FRB-MIT model and the Michigan mode!. ! We test for structural change between
two periods, the period over which each model was originally estimated and a
post-sample period. Because the latter is very short, our tests reduce to prediction
interval tests. analogous to tests for structural change in the coefficients of a single
equation model when one of the comparison periods is short.

As far as we know, prediction interval tests have not previously been applied
to the reduced form of a simultaneous equations model, let alone to that of a large
nonlinear model. There have been studies in which differences between actual
outcomes and what we call ex post nonstochastic (reduced-form) forecasts (fore
casts generated from the point estimates of all parameters) have been compared
across models including a variety of "naive" models. but those comparisons
cannot offer statistical grounds for acceptance or rejection ofa model. In contrast,
the tests we perform determine in a probabilistic sense whether t he magnitudes of
ex post forecast errors can be attributed entirely to randomness in the economy
and to uncertainty stemming from the size of the data set, or, must in part be
attributed to structural deficiencies of the model, where structure includes a
stochastic specification consistent with the particular estimation procedure
employed.

The paper is organized as foilows. In section II. we give a brief description of
the models we test and describe the class of test statistics we use. Our grounds for

• T. Muench and N. Wallace are staff members of the Economics Department. the University of
Minnesota. and Consultants to the Federal Reserve Bank (If Minneapolis. A. Rolnick is an Economist
at the Federal Reserve Bank of Minneapolis: and W. Weiler is Assistant Director. Information Services
Division, the University of Minnesota. All views expressed hfrein are the sole responsibility of the
authors and should not he interpreted as repr~senting those of the Federal Reserve Bank of Minneapolis
which provided financial support.

1 The Michigan model is described in [6]. The version of the FRB-MiT model we test has not been
published. Versions much like it are described in [2] and [3].
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employing these statistics and our associated distribution assumptions are pre
sented in Appendix I. The subsequent three sectIOns are devoted to a presentation
of results: section III to basic test results: section IV to aspects of the confidence
regions and to tests on linear functions of the variables; and section V to other
aspects of the forecast distributions--<:omparisons betw:en mean forecasts and
nonstochastic forecasts, comparisons between forecast varIances from ll1ultiperiod
endogenous simulations and those from one-period simulations, and comparisons
between forecast variances and residual variances.

II. SPECIFICATION OF THE MODELS AND DESCRIPTION OF THE TEST STATISTICS

A. Tire Models

As noted in the introduction, we test two models in this paper. The first, the
Michigan model, is a relatively small model with 24 estimated equations. It has
almost no financial sector and operates with the interest rate on 4--6 month
commercial paper as its exogenous monetary instrument. The second model, an
old version of the FRB-MIT model, has 75 estimated equations and a fairly
elaborate financial sector which gives us a choice among possible monetary
instruments. 2 We chose the money stock, because the model has most often been
used that way, and, because that is consistent with the estimaiion procedure; the
demand for demand deposits in the FRB-MIT model was estimated with an
interest rate as dependent variable and demand deposits as an independent
variable.

Both models are estimated on quarterly data, the Michigan model on data
for the period 1954(1) through 1967(4), the version of the FRB-MIT model we
test on post-Korean War data up through 1968(3). The Michigan model was
estimated by two-stage least squares with a special adjustment for serial correlation
in two of the equations. Many of the equations are in first-difference form. The
FRB~MIT model was estimated by ordinary least squares. In a majority of the
estimated equations first-order serial correlation coefficients were estimated, and
partial differences taken.

The models are noncomparable not only with regard to estimation period but
also, and perhaps more importantly, with regard to what is taken as exogenous.
In all cases we set the forecast-period values of the exogenous variables at their
actual values. To do otherwise would mean specifying equations for those variables
and, in so doing, venturing far from the reported base models. On balance, the
FRB-MIT model takes fewer variables as given than does the Michigan model,
which one might expect given their relative sizes. The differences are summarized
in a rough way in Table 1. Note that the set of exogenous variables for FRB-MIT
is not simply a subset of that for the Michigan model. In particular, we should
emphasize that we shall be examining reduced forms as functions of two quite
different monetary instruments; the money stock in FRB-MIT, the commercial
paper rate in Michigan.

2 We altered two equations in the FRO-MIT model, those for capacity utilization and the unemploy
ment rate. In both cases it was an alteration of form only, one that constrained the variables to their
eco~omi;;ally meaningful ranges, roughly speaking (0, I). In both cases, residual standard errors for the
vanables ~hemselves were lower for our forms than for those originally in the model.
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TARLE I

PRISCII'AI. EX()(,ENOliS VARIABI.ES BY MOIlE1.

Mi<:h FRR-MIT

Monetary

Fiscal

GNP and Income
Components

Deflators

{

Narrowly Defined Stock of Money
Interest Rate on 4~~6 Month Commercial

Paper

j
'Ratio of Personal Tax Payments to Personal

Income
Ratio of Corporate Tax Liability to Before·Tax

Profits
Transfer Payments to Persons
Federal Government Expenditures

jCapital Consumption Allowance5
Exp0rls
Imports
State and Local Government Expenditures

l. Farm Investment

rGross Auto Product
IGross Farm Product
; Total Government Purchases
IExports

l ,mports
Inventories

x

x

x
X
X

X
X
X
X
Y

X
X
X
X
X
X

Y'

X

Y
Y
X

X
X
Y
Y
X

y
X
Y
Y
X
Y

• Not in the model~

b "X" stands for independent or exogenous~

, ..y" stands for dependent or endogenous~
d In the Michigan model, net exports and its deflator are exogenous variables~

In order to make a test for which statistical properties can (in principie) be
determined, the models must be specified in stochastic terms. This means that for
the types of tests w;: wish to make, more must be specified or assumed about the
models than has been reported~ It follows that the model tested is, in effect, a
composite between a base model reported by its originators and our addendum,
which will be described in detail below. One point, however, deserves mention here~

We assume that the structural equation residuals are independent across equations.
This is consistent with both the reported estimation procedures and the lack of
reponed covariances~We admit, though, that abandoning that assumption could
have far-reaching effects on test results.

B~ Estimation alld Forecast Periods

Since, in general, the specification (functional forms, variables included, etc,)
of each model was not determined before viewing the base-period data, it seemed
imperative to use a comparison period outside that used to estimate the model
initially. Therefore, we identify the base period for test purposes with the reported
estimation period and use for the comparison period a subsequent period which
we refer to as the "forecast" period~ Given the data available when we performed
the computation, the result is a twelve-quarter forecast period for the Michigan
model, 1968(1) through 1970(4), and a nine-quarter period for the FRB-MIT
model, 1968(4) through 1970(4).
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As WI: shall Sl'e, a disadvantage of sUl'h a hrl'akdown IS Ilul a wllkr dass of
ll:sts could hc perfol'lned if the "eslinwllon" period was shortellI'd and thl'
"rmccast" period knglhencd enollgh til allow all paramL'lLTs to hI' eslilll<!lnl frolll
data 1'01' tht' "fllll'casl" pL'l'iod alollt', Iu pal'lielll:!r. a test of the hvpolhesis that all
parall1d,'r~ chan~ed a:: opposed to lests thatcl'rl<llll I'll I1ctj"lll:i ,If Ihe parallldl:1S
changed might then be possihle, I Iowevl'I' , evell thell, lcsts or hypothesl's similar
tn Ollrs wOllld still hi.' of inlercst ,Hid the cakulatioll of the stallslit:s I'm lhelllllot

any simpler.

C. '['/Ii' 'Ii·s/ SIII/;sl;cS

III Append ix I we argile Ii) I hat wit!l a posl-sa mpk Clllll pa risoll pniod as short
as Ollrs, the strlldmal challge hypotheses lhat an: tcstahk are those eqllivalenlto
hypotheses ahollt whL'lher lhe ohserved vailles ofthc I:lldogcnous variables for the
"fmeeast" period eOllle l'rlllH the distriblltion pf\~dicll:d hy thl' nllllll'l estimatl'd
fl'llm !he sa mpk perillli dat a, and (ii) tha t a II appropri,l te test is a predid ion inlnval
test. whcre Ihe rejeL'lion region is of the form

J) ICl,' \')]'[C1:("] IIC(" .\')];1' > F,(I' ..si,

Here \' and C' are IIM-elemL'lIt veL'tms oLIL'lllal alld predieted vailles of the 1'lldo
gl'1I01;S \',lI'i,;hles in thl' forecast period, II heillg the Illllll~ll'r Ofl'llllogellolls variahks
and AI the number of quarkrs in the forl'east pl'l'il1d, 1: is thl' 1/1\1 x 11M l'stimated
lllvariance matrix or \', (' is an I' x IIJ\I matrix of cOllstants of rank /" As desl'l'ibed
helow, .f and 1: arc eOl;lpull:d cond it iona Ion the va lues of the endogl:llouS va ri;lbll's
dming the estimation pl'riOl.l. F,(I', s) is the I !J. percent point of an F distrihutioll
with ,. and s degrl'cs 01' frel~dolll, whcre ,\ is a rough avcragc of the degrl'es of
frl'edom (in c~timatjng the rcsidual) for the strlletlll'al clluatiolls of the model, For
both models, wc llsed C( = ,os and s = 4~, Sincl' f) is a positive·dclinill' quadratie
form in ('(,I' ~ .F), till: aCCl'ptanll' n:gion J) ~ f,(I', s) is an ellipsoid in Cy l'l'nteml
at (v,

If C is taken as an 11M x 11M identity matrix, we arc asking for rl'jl'etion ifany
detn:taolc stnlltmal change took plalC, A dl'leetahlc structural eh:lIlge is a lhangl'
in an estimable function, estiJllilnll' frolll !he post-sample period data alone, The
fal't that om comparison period is '·short" implies thai thae is, in fal't. a Sl'\ ofull'
dctl~elahle changl's, These arc p:lrilll1etcr changl's constraincd so that they do not
i1ffcet the prellil'll'd distrioutioll of the cndogenous varia hies in our cOll1parisUll
(forecast) period,

By llsing llill'erl'nt C matriees, we lan altempt to dl'linl'ate what typc of lhange
hil~ taken plan:, The l'll'eet of (. is tolilter out t:ertain SUbSl~ts of (kll'dahlc changes,
8y varying C. Wl'lan also make lise 1)1' the fad that we can lest for sOllie types of
lhange with grl'i1ler power than othcr~, This is hl'Callsl: (with a lhell "normaliza·
tion" for C) we can prcdict (ifno change has taken place) some linear lllmhinatiolls
of J' with grl'ater aecurilcy and, thereforl', can deleL:t smaller lhangl's,

D, COllllllilotioll o/l/ll' SIl/lisl;e J)

Bceause the models consist of nonlinear strllL'luraI e4uations, WI: L:Olllpllll'
S' = ('h I" , , '.\'1 ill, ,i'2I' , , , ,.f'2M" , , ,,i'n.\tJ and t hy way of Monte Carlo l'xperi·
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l11ent~. That is done by rcpeatedly drawing values of the structural paramctcrs
lOnsistent with the estimation period mean and covariancc estimates. and values
for the forecast period residuals eonsistcnt with the estimation period residual
va ria l1\;e estimates, and for each drawing. generating an Mil dement· 'observation"
on y. with the estimation period val lies of the endogenous variables held fixed at
the actual values. For each model we take 300 random drawings and take as .f'the
(Mil-clement) vector of averages of those observations and as i the sample
(J'vlll x Mil) covariance matrix.

The random parameters are generated one structural equation at a time.]
Letting &j stand for the column vector of random parameters of the i-th estimated
eqeation, a priori sample values of &j arc generated by the matrix equation.

(I)

where :Xi is the estimation period vector of point estimates, r is a column vedaI'
of independen!. mean zero. variance one. random variables generated by a random
numher generator~ (drawn independently for different equations). and Rj is a matrix
such that R;R j equals the estimation period estimated covariance matrix of the
point estimator. It follows, then, that aj generated by equation (I) has mean aj and
covariance matrix R;R j , the estimated covariance matrix of the point estimator.

The additive disturbance for each estimated equation is random both among
runs and among periods in each run. It is chosen independently across time and
equations according to

(2)

where wjU) is the residual for the i-th equation at time j, (Jj is the estimation period
residual standard error of the i-th estimated equation. and r is a random variable
with the same properties as the t' in (1;. (Note that the v's referred to in (I) and (2)
are drawn independently.)

Given (I) and (2), a single M-period simulation run may be thought of as
generated as follows. First a random set of parameters is drawn for each estimated
equation. Those drawings constitute the parameter values for the run. Then,
residuals are drawn, one for each estimated equation. These are embedded in the
equations, and a solution, )'111 = J'II' J'ZI'" .. Ynl' ohtained via the Gauss-Seidel
iterative procedure. That solution is dependent on actual estimation-period values
of all variables and on actual forecast-period values of exogenous variables. Then
a new set of residuals is drawn, again according to (2), and a solution. an observation
on yl21, obtained. That observation is again dependent on adual estimation-period
values of all variables and on actual forecast-period values of exogenous variables.
and. in addition, is dependent on the previously solved for value of yO). Proceeding
in this way, observations on yl]) . .1'(4), ..•. l~f) are obtained. As noted above. for the

.1 This follows from the assumed independence of disturbances across structural equations.
• The elements of I' are drawn from a truncated normal distribution. Let x be a zero-one normal

random variable. We draw values of.~ and acc~pt only those for which Ixl < 2. The accepte-J .~·s ha.e
mean zero and variance (0.88)2. so that I' = (1.137)x has mean zero and valiance one, the desired distri
bution. We choose r"s from a truncaled dIstribution, because most parameters and disturbam;es do not
a priori have infinite range.

The above description applies to all parameters except first-order serial correlation coefficients in
the FRB-M1T model. For their distribution. see Appendix II.
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principal tests, we performed 300 such At-period endogenous simulation runs for
each model. 5

"I. AASIC TEST RI'.';ULTS

Bdore turning to test results, it may be helpful to focus on some of the raw
data. Figure 1 shows ,! llumber of single-4uarter forecast distributions for real
GNP frolll the Michigan model; while Figure 2 shows such distributions for the
GNP deflator. Figures 3 and 4 show corresponding distributions from the FRB
MIT model. There is a clear-cut relationship between the forecast span and the
variances of those distributions: the greater the forecast span, the greater the
variance. We shall argue below that this arises mainly from the presence in the
models of lagged endogenous variables and the fact that the greater the forecast
span, the greater the number of those variables generated randomly within the
simulations. Notice that in Figure 4. at each date the actual valuc of the defiat0r
lies outside the estimated distribution of possible outcomes forecast by the
FRB-MIT model.

We limit all our testing to a subset of the endogenous va riables of the mode!s:
for Michigan, the 12 variables listed in Table 2, for FRB--MlT, the 16 variables
listed in Table 3. This means that the columns of C corresponding to all other
variables have all zerO elements. For Michigan, the list includes an exhaustive
breakdown of the endogenous components of nominal GNP-variables 3, 5, 9,
and 12-while for FRB-MIT it includes a similar breakdown except that imports.
which are endogenous, are excluded. Tables 2 and 3 contain a variable-by-variable
view of the output; for each variable and each date, we list the actual value, the
actual minus the mean value (the means of distributions like those in Figures 1-4),
and the standard error of forecast (stiindard deviations of distributions like those
in Figures 1-4).

To the extent that the structure embodied in each estimated modei applies
over the forecast period, the standard errors offorecast in Tables 2 and 3 measure
the precision of single-date, single-variable forecasts made conditional on values
of the variables assumed to be exogenous. For some variables, those standard
errors seem quite large. For real GNP for the Michigan model, they range from
almost 1 percent of the level for the first quarter of the forecast period to about
5 percent for the twelfth quarter; for the FRB-MIT model they range from about
three-fourths of I percent in the first quarter to almost 4 percent in the ninth
quarter.

For any variable at any date, the ratio of the forecast error (the second entry)
to the standard error of forecast (the third entry) is a single-variable version of the
D of section II and can be treated as a t statistic with 48 degrees of freedom,
to.05(48) = 2.01. The F statistics in the last column are for each variable over all
quarters of the forecast period.6 The relevant 5 percent critical values are

5 We performed (;hecks on both the input and the output; the output was checked for oscilla1ory
within-run behavior. while the input was checked for coding errors (see Appendix II).

6 In terms of the statistic D, the (2 statistic for variable i in quarter j is found by using for C the
relevant row of an identity matrix of order Mn: namely, the row with unity in the [(i-OM + jJth
column. The F statistic for the i-th variable is found by using for C the rows obtained by lellingj = I.
2..... M.
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TABLE 2

MICHIGAN: ACTUALS, FORECAST ERRORS, AND STANDARD ERRORS OF FORECAST

1968-1 1968-2 1968-3 1968-4 1969-1 1969-2 1969-) 1969-4 1970-1 1970-2 1970-3 1970-4 F(12,48}

l. Gross Natiooal 693.5 705.4 712.6 711.5 722.1 726,1 730.9 729.2 123.8 724.9 727.4 720.3
Product ($1958) 2.4 7.0 13.7 18.5 23.0 26.2 29.6 26.6' 22.5 20.5 18.1 12.4 .45

(5.6) (S.l) (9.9) (12.7) (14.1.0) (16.1) (18.9) (21.9) (24,7) (28.2) (34.4) (38.3)

2. Implicit Deflator 120.4 121.7 122.9 124.3 125.7 127.2 12.9.0 130.5 132.6 134.0 135.5 137.4 ·forCNP (l9SB-IOO) .2 .1 -.1 .0 .3 .5 1.1 1.7 2.5 3.3 4.2 5.8 2.25
(.2) (.4) (.5) (.7) C.9) (1.1) (1.4) (1.6) (1.7) (1.9) (2.1) (2.2)

3. Consumption ($) 519.6 529.0 543.8 550.8 562.0 573.6 582.1 592.5 603.1 614.4 622.0 627.2
7.2 '.1 13.3 14.1 19.3 22.6 23.0 25.8 27.7 28.2 28.0 34.7 1.04

(4.1) (6.3) (7.8) (9.4) (11.0) (13.0) (15.6) (l9.0) (22.5) (25.8) (31.8) (35.5)

4. Corporate Before- 86.7 88.6 88.4 91.3 93.0 93.4 89.9 68.5 82.6 82.0 84.4 79.2
TalC Profits ($) -2.1 .1 2.5 3.4 5.0 5.' 5.' 2.3 -1.5 -.5 -.2 -.2 .50

(J.O) (4.0) (4.8) (6.0) (6.7) (7.5) (8.5) (il.5) (10.3) (11.5) (13.8) (15.0)

5. Business Fixed 88.4 86.4 68.3 91.6 95.7 97.5 101.5 102.7 102.6 102.8 103.6 101.3 ·Investment ($) 2.' -.3 1.7 3.' '.4 7.8 11.6 13.4 15.0 17.4 19.9 19.0 2.02
(1.5) (2.6) (3.8) (5.3) (6.9) (8.5) (10.1) (11.9) (13.7) (15.5) (17.2) (18.8)

,. PrivatI! Nonfarm 146.9 IU.8 152A 157.9 169.2 149.6 142.9 135.7 125.2 128.6 151.2 175.3
Housing Starts -6.3 -14.3 -8.7 -6.6 '.7 -.1 4.2 3.' -.1 5.1 18.7 26.4 .68
(0,000'5) (8.0) (10.5) (13.4) (15.0) (17.6) (21.2) (21.8) (22.2) (23.6) (24.7) (27.2) (27.3)

7. Corporate AAA '.1 '.3 '.1 6,2 '.7 ,., 7.1 7.5 7.' 8.1 8.2 7.' ·Interest Rate (%) .0 .0 -.1 -.1 .1 .0 -.1 .2 .5 .7 ., .7 2.27
(.1) (.1) (.2) (.2) (.2) (.3) (.3) (.3) (.3) (,4) (.4) (.4)

8. Unemployment 3.7 3.' 3.' 3.4 3.4 3.5 3.' 3.' 4.2 4.8 5.2 5.8
Rate (%) -.4 -.5 -.8 -1.4 -1.9 -2.2 -2.6 -3.1 -3.0 -2.9 -2.8 -2.6 .68

(.3) (.5) (.7) (.8) (1.0) (1.2) (1.3) (1.5) (1.7) (l.9) (2.2) (2.5)

,. CllangeinBusiness 2.' 10.4 8.2 '.3 7.4 7.' 1l.3 7.2 1.' 3.1 5.5 3.'
Inventories ($) -6.2 2.5 2.0 5.4 4.7 4.1 '.5 5.2 2.3 2.7 4.2 1.4 1.21

(3.1) (3.5) (J.7) (4.0) (4.5) (4.4) (4.4) (4.8) (5.0) (4.8) (6.1) (6.3)

10. Output Per Ma.nhour 132.4 133.7 134.2 134.6 134.1 134.0 134.2 134.3 133.4 134.7 136.1 137.2
Nonfa=Index -.5 -.8 -1.6 -2.7 ·-4.7 -6.5 -8.5 -10.6 -13.8 -15.5 -17.2 -17.9 .67
1957-1959-100 (1.1) (1.5) (1.9) (2.4) (2.9) (3.4) (4.1) (4.8) (5.7) (6.6) (7.5) (8.6)

11. EI!lp1oyment Rate 97.7 97.8 97.8 98.0 98.1 98.0 97.8 97.8 97.3 96.6 96.2 95.8
ofH.11es (20 Years .2 .3 ., 1.2 1.8 2.1 2.4 2.' 3.0 2.8 2.7 2.7 .54
and Over (%) (.3) (,5) (.7) (.9) (1.1) (1.2) (1.4) (l.6) (1.8) (Z.O) (2.4) (2.7)

12. Residential 28.8 30.6 29.9 31.7 33.0 33.9 31.0 30.4 29.1 28.4 29.2 32.2
Construction ($) .1 .7 -.' .0 ." 2.' 1.5 2.2 2.0 2.0 2.3 3.1 1.10

(.7) (1.2) (1.7) (2.2) (2.6) (3.0) (3.5) (3.7) (4.0) (4.2) (4.6) (4.9)

(a) Forecast Error .. Actual - Hean Forecast.

(b) The F statiatics are by variable over 12 quarters.
Here and in subsequent tables. F values in excess
of the relevant .05 critical values a.re starred.

F0.05(12,48) = 1.96 for the Michigan model, and F0.05(9,48) = 2.08 for the FRB
MIT model. For the Michigan model, F statistics for the GNP deflator, business
fixed investment and the corporate AAA bond interest rate exceed the critical
value; for the FRB-MIT model, F's for the GNP deflator, the two interest rates,
nonresidential structures, and state and local purchases exceed the critical value.
It is interesting that despite differences between forecast periods and exogenous
variable sets, the models fail on roughly similar sets of variables :sets which include
the GNP deflator, business fixed investment, and the long-term interest rate.?

In interpreting the F statistics in Tables 2 and 3, it should be noted that if the
model predicted zero correlations among outcomes for the same variable in
different quarters, the F statistic for each variable would equal the average of the
squared t statistics for the variable. Some examples of the correlations among
variables are in Table 4 which contains a submatrix from the matrix of simple
correlations between all pairs of the nM variables for the FRB-MIT model. The
simple correlations between real GNP at different dates are given in the upper
left-hand block; those between the GNP deflator at different dates in the lower

7 It may also be of interest to note that the FRB-MIT model does poorly predicting the corporate
AAA interest rate, but does well predicting the dividend-price ratio, variable 4, even though the former
is an important determinant of the latter.
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TABLE 3

FRB-MIT: ACTUALS, FORECAST ERRORS, AND STANDARD ERRORS OF FORECAST

I. Gross'National
Product (51958)

2. Imp1{cit Deflator
for GNP 0958"100)

3. ConsumptIon (5)

l,. DivIdend Price
Riltlo (l:)

5. CammerC!.ll Paper
Interest Rate <:0

b. Corporate AAA
Interest Rate (l:)

7. Deposits at
S6Ls ($)

B. Corporate6.. fnre
Tal< Profits (S)

9.llesidcntlal
C.onstructlon (S)

10. Producer
Durable:; ($)

Nonresidential
Structures (5)

12. ChanRl' roBustness
i.nventor!l's (5)

13. State 6 Local
PurchaseI' ($)

14. Employed Civil [.111
l.abut" Force (mil.)

15. l'n"mpluyment
ItHe (Zl

lb. Federill
Tax,,:; (5)

196B-1,

721.8
9.8

(5.3)

123.5
.7

(.3)

550.8
3.1

(4.6)

2.9
-.3
(.2)

6.0
.8

(,6)

6.2.,
(.2)

132.1
.0

0.0)

95.7
8.7

(4.B)

31.7
1.6

(1.0)

61,3
-.6

(1.1)

30.3
1.2
(.7)

9.7.,
(2.7)

104.6
7.S

0.6)

76.4
.3

(.4)

3.'
-.4
(.2)

187.0
5.b

(J.4)

1969-1

722.0
11.8

(l0.])

125.7
2.3
(.S)

5(,1.8

'.7
(7.l)

3.1
-.2
(.3)

..,
1.6
(.8)

..,
.8

(.3)

134.1
.8

(2.1)

93.0
10.9
(7.3)

33.0
3.0

(2.4)

63.1
I.S

(1.8)

32.6
3.'
(8)

7.3
.6

(4.0)

107.6
10.4
(2.1)

77.4
1.4
(.8)

3.4
-.7
(.4)

197.2
17.7
(5.0)

1969-2

726.2
8.9

Ot..O

127.2

3.'
(.6)

573.3
10.4
(8.7)

3.1
-.2
(.3)

7.S
2.3
(.9)

6.9
.9

(.3)

135.3
.8

(J.l)

93.4
8.6

(9.2)

33.9
4.6

(J.9)

65.2
'.S

(2.8)

32.3
3.1

(1.0)

7.6
3.1

(4.9)

JlO.O
11.3
(2.5)

77.6
I.S

(1.2)

3.S
-.9
(.6)

202.5
19.4
(f>.S)

1969-3

730.7
9.0

(16.9)

129.0
4.7
(.8)

582.1
11.5

(10.5)

3.3
-.1
(.lo)

8.S
2.6

(1.2)

7.1
.8

(.4)

136.0.,
(4.0)

89.9
6.1

(9.8)

31.0
2.S

(4.9)

66.3
6.8

(4.0)

3S.2
6.1

(1.3)

10.8
7.1

(4.9)

111.7
1l.4
(2.8)

78.1
2.0

(1.6)

3.'
-1.0

(.8)

200.8
17.2
(7.4)

1969-4

729.3
8.'

(19.9)

130.5
S.8

(1.0)

3.'
-.1
(.t.)

8.6
3.2

(1.2)

7.S
1.4
(.4)

136.2
.2

(4.8)

88.S
7.2

(10.7)

30.4
3.1

(5.3)

67.5
9.6

(5.l)

35.1
6.2

(1.8)

6.5
4.6

(5.4)

Jl4.3
11.1o
(3.3)

78.6
2.S

(2.0)

3.6
-1.3
(l.0)

202.0
18.2
(8.2)

1970-1

723.6
2.2

(21.8)

132.6
7.4

(l.I)

603.1
19.8

(13.9)

3.6
.1

(.lo)

8.6
3.9

(l.0

8.0
2.0
(.4)

136.8
-.9

(5.5)

82.6
2.2

(10.9)

29.1
2.S

(5.6)

66.9
11.3
(6.2)

35.7
7.2

(2.2)

.9
1.2

(5.6)

Jl7.4
11.6
0.5)

79.0
3.1

(2.3)

'.1
-1.2
(I.V

195.9
17.2
(9.0)

1970-2

724.7
-3.5

(22.7)

134.0
8.S

(1.3)

614.1o
21.8

(14.8)

'.0
.S

(.4)

8.2
3.6

(1. I)

8.1
2.2
(.4)

139.2
-1.2
(6.1)

82.3
3.1

(11.0)

28.4
1.0

(5.8)

67.5
1t..O
(7.1)

35.3
7.2

(2.6)

2.6
'.1

(5.5)

118.6
7.7

(3.8)

78.5
2.7

(2.6)

'.8
-.7

(].3)

196.6
15.2
(8.9)

1970-3

727.3
-5.5

(24.0)

135.5
9.7

(1.4)

622.1
20.8

(16.5)

'.0
.S

(.5)

7.8
3.'

(1.0)

8.2
2.'
(.5)

143.1
.S

(6.7)

84.3
2.'

(11.6)

29.2
-.2

(6.0)

68.6
16.7
(7.7)

35.0
7.S

(3.0)

S.O
S.3

(5.9)

122.4
JI.O
(4.1)

78.5
2.7

(2.8)

S.2
-.S

(1.4)

194.9
16.7
(9.2)

1970-4

720.5
-19.5
(25.3)

137.4
1l.4
(1.6)

627.0
17.5

(18.0)

3.6
.1

(.5)

6.3
1.8

O.I)

7.9
2.1
(,5)

147.4
3.0

(7.3)

76.3
-8.8

02.7)

32:2
.2

(6.7>

66.6
15.2
(8.1)

31o.7
7.S

(3.)

3.0
2.2

(5.9)

125.0
11.1
(4.5)

78.6
7.7

(3.0)

S.8
.0

(1.6)

191.7
10.8
(9.7)

F(9.48)

.98

6.75

.J)

I. 2~

2.45

5.18

.63

.82

2.05

1.23

.44

4.01

1.07

1.63

right-hand block; and those between the two variables in the upper right-hand
block. The corresponding submatrix for the Michigan model (available upon
request) is remarkably similar.

In each case, the correlations between forecasts of a variable at one date and
at another date are positive. Moreover, the correlations decline as the time span
between the dates increases: namely, looking from the diagonal either across a
row or up a column. More interestingly, holding the span between dates fixed, the
correlations tend to increase with time: namely, looking down from upper left to
lower right on other than the main diagonals. This occurs despite the fact that the
variances in Tables 2 and 3 increase with time and implies that the within-path
covariance increases even faster. In a sense, it suggests that individual forecast
paths become increasingly smooth as the fixed initial set of lagged endogenous
variables gets less and less important.
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TABLE 4

FRB-MIT: A SUBMATRIX FROM THE CORRELATION MATRIX-REAL GNP AND THE DEFLATOR

REA L GNP
I

DEFLATOR

68-4 69-1 69-2 69-3 69-4 70-1 70-2 70-3 70-4 I 68-4 69-1 69-2 69-3 69-4 70-1 70-2 70-3 70-4

1.00 .77 .60 .50 .43 .36 .29 .25 •23 1-. 33 -.13 .02 .15 .18 .21 .22 .21 .18 68-4

1.00 .88 .73 .64 .55 .44 .36 .30 1-.23 -.16 .03 .21 .26 .33 .35 .35 .33 69-1

1.00 .90 .80 .72 .60 .49 .41 1-.15 -.12 -.01 .20 .28 .37 .41 .41 .40 69-2 R
E

1.00 .94 .86 .75 .64 .54
1
-.12 -.10 -.05 .09 .19 .31 .37 .39 .39 69-3 A

L
1.00 .95 .85 .75 .65 1-.13 -.10 -.08 .04 .11 .25 .32 .35 .37 69-4

G
1.00 .94 .85 .74,-.11 -.10 -.11 -.01 .05 .16 .24 .29 .33 70-1 N

Ul P
0 1.00 .95 .85 ,-.10 -.10 -.13 -.06 -.01 .08 .13 .20 .27 70-2
VJ

1.00 . 95 1-. 11 -.11 -.16 -.11 -.07 .02 .05 .10 .18 70-3

1.00 1-.11 -.12 -.17 -.14 -.12 -.05 -.02 .03 .10 70-4
---"--- - - -- - - - --_.
1.00 .73 .58 .48 .44 .36 .33 .30 .31 68-4

1.00 .85 .74 .67 .57 .51 .47 .44 69-1

1.00 .89 .83 .74 .67 .62 .58 69-2 D
E

1.00 .93 .87 .79 .74 .69 69-3 F
L

1.00 .94 .89 .83 .79 69-4 A
T

1.00 .95 .91 .87 70-1 0
R

1.00 .97 .93 70-2

1.00 .98 70-3

1.00 70-4



The similarity between correlation matrices for th(~ two modds l:Xtends to till:
off-diagonal block. The pattern of asymmetry is e0l111110n to both 1110dels. Real
GNP is negatively correlated with past prices and positively correlated with future
prict:~, aIL hough the fonner gets weaker and the latter stronger the further one gets
from the beginning of the forecast period.

The positive correlations between rcal GNP at / and al 1+ j help explain,
for example, why the F statistic for the Michigan model for the vector of GNP
outcomes is lower than the average of the squared /'s, which is 1.32. The actual
forecast errors for real GNP for that model arc all of the same sign; the model
underpredicts real GN P in every quarter. But because of these positive correlat ions,
those errors cast less doubt on the model than would a seqlll:ncc of errors of
similar absolute magnitude but with randomly varying signs. An average of the
squared t's takes account only of the absolute magnitudes. In contrast. the F
statistic credits the model for predicting correctly that forecast errors for different
dates will be positively correlated.

Table 5 contains joint test results across variables and time. For the Michigan
model, tests are performed for variables 2-12 ill Table 2 for the first quarter (III = I),
the first four quarters, the first eight quarfers, and all 12 quarters. Rcal GNP is
omitted, because an identity connects it to the deflator and the endogenotls com
ponents of GNP. (The test statistics are virtually unaffected by including real
GNP and omitting one of the other variables entering the identity. Thp.y would be
completely unaffected if the identity were linear.) For the FRB-MIT model, tests
are performed on all i 6 variables in Table 3 for the first quarter, the first four, the
first eight, and all nine. Given the variable-by-variable tests in Tables 2 and 3 and
the seemingly large standard errors of forecast exhibited there, these results are
somewhat surprising. They suggest that neither moder's structure is adequate
during the forecast period, although that result comes through less strongly for
Michigan than for FRB-MIT. Loosely speaking, if these results are put along side
Table 2 and 3 results, they suggest that although the models predict fairly well the
correlations over time between forecast errors for single variables, they do not
correctly predict the correlations among forecast errors for different variables.

IV. ASPECTS OF THE CONFIDENCE ELLIPSOIDS AND TESTS ON LINEAR FUNCTIONS

OF THE VARIABLES

As indicated above, the tests which we perform correspond to examining
ellipsoids. In the last section, we to some extent examined t and performed tests

TABLE 5

JOINT TI:.';T RESUL1~

Michigan FRB-MIT
-------

1/1 F(li 111.48) III Ffl6m, 48;

I 2.23· I 3.89·
4 2.62· 4 4.63·
8 2.26· 8 5.8'·

12 3.90' 9 5.79·
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TABLE 6

CHARACTERISTIC Roup.; A:'<I) VECTORS Of Tlil COVARIANCE MATRIX Of CORPORATF BEFORE-TAX PROFITS FROM THE MICHI0A:-l MOj)FL

Vtlctor (clement j multiplies quarter i value)
Root as a Fraction

or the Sum I 2 3 4 5 6 7 ~ l} 10 II 12
-----_._-.------~-~~----_.-

(U;45 0.04 n.07 0.11 0.15 0.18 022 0.26 0.31 0.34 0.3:-> 0.46 U.49
0.089 0.14 0.2! 0.30 0.35 0.35 0.34 n.31 0.24 D.ll5 -0.11 -0.34 -0.45
0.023 1),21 0.34 0.32 0.34 0.21 - am -0.26 - 0.40 -0.37 - 0.22 0.11 \l.40
Oml - 0.43 -U.51 -0.23 0.U9 0.3<) 0.34 0.19 --0.14 -0.29 -0.20 -ll.O2 (1.2U

V1 0.007 -0.17 -0.11 -O.O! 0.26 0.26 -0.02 -OJ5 '·().42 0.16 0.5<) Oil -0370
l./'l 0.006 0.42 0.23 -0.34 -0.45 0.09 0.46 o. is -0.25 -0.26 0.19 0.16 -- 0.14

0.004 - 0.25 0.00 0.26 0.21 -0.51 0.10 0.28 -0.01 -0.44 0.a9 0.44 - 0.27
0.004 -0,06 -0.09 0.31 -- 0.09 -0.38 0.41 0.12 -- 0.51 0.47 -D.09 -0.23 0.14
0.003 -0.51 0.04 0.09 -0.33 0.16 0.24 -(US 0.13 0.17 -OJ2 031 -0.16
0.002 -- 0.38 0.44 ·-0.02 -0.18 0.17 - 0.40 0.54 - 0.28 -0.02 0.17 -- 0.19 0.09
0,002 0.23 -0.13 -0.15 012 0.15 -'0.28 0.28 -0.27 0,35 -0.46 0.49 -0.26
oom 0.13 -0.36 066 -Djl 0.29 -'0.17 0.05 (l.O I -OJ3 0.08 0.09 ·007



which involv~d chooslllg for C those matrices consisting of dil1i:r~nt sets of rows
of the identity matrix of order /lA1. In this section we shall examinl: the shapes
of till' ellips~ids for l:crtain subvectors of .r and shall perform tests on linear
functions of them: first, tests suggested by the sh'lpt:~ of the ellipsoids: and then a
test of interest. a priori.

We are interested in the shape of the ellipsoid as a means of summarizing the
forecast distributions. Thus, if I' is a j vector and L is its.i x j covariance matrix
with characteristic roots ). ~ 1. 2 ~ ... , ~ i j illld corresponding unit vectors
PI' 1'2"'" l'j' then (1: is to the length-one vector such that the varianct: of l'i.l' is a
maximum equal to ill' In a sense, then r'd' is thl~ linear combination about which
the model has least to say. Similar interpretations wn be given to l'~y. 1':,.1' ..... l'jy.
where f!jy is the linear combination with minimum variance. We arc also interested
in how well the model actually predicts these linear combinations.

We begin with results for the M vector of deviations of each variable for the
different dates of the forecast period. It turned out that the shape of the M
dimensional ellipsoid is almost the ~ame for every variable in both models. That
allows us to illustrate the results by presenting the ,\if roots and the corresponding
vectors for anyone of the variables.

As illustrated by the vectors in Table 6-those for a randomly chosen
variable . the general pattern of characteristic vectors is that those associated with
lower vari.lncc exhibit higher frequency oscillations. In each t:ase 1'(, the vector
associated with the highest variance component, exhibits cycles with a period
much gre.ltcr th.tn the forecast period (i.e., frcquency near 0), while 1"2 and 1"3

exhibit periods with frequency dosc to the length of the forel:ast period. The vector
associated with the lowest variance typically has a period of two quarters. A
second feature of the canonical form is that the first one or two components account
for a very large percentage of the variance.

We have also computed for each root the test statistic for the corresponding
lineM combimltion. In Tables 7 and 1I we give for each variable the M roots
(ranked from largest to smallest and expressed as a fraction of the slim) and above
it the corresponding test statistc, [I'i(}' - .oF/i'i' which can be evaluated using an
F( I, s) distribution.s Note that the F statistics in Tables 2 and 3 arc simply averages
of these. Although we do not discern any clear pattern from the:>c tables directly,
by splitting the characteristit.: vectors into high and low variance groups, certain
features can be noticed.

For each variable, we have divided the M -dimensional space into a space of
high variance linear combinations (in a sense, those about which the model has
little to say) and a space of low variance linear combinations (those abollt which
the model has a lot to say). The test results for each subspace Me given in Tables 9
and 10. The parameter k, which is the dimension of the high variance space was
determined as follows. Given that the roots are ranked from largest(}.I)1O smallest-
k = 4 if i.4/i' 1 > 0.05, k = 3 if i'4!i. 1 < 0.05 and i.j/i.) > 0.05, k = 2 if )'3/..1 1 < 0.05
and i.2/1. 1 > 0.05, while k = I if i'2/i' l < 0.05. Given the value ofk for each variable,
the high variance test statistic for that variable is the a verage of the corresponding

8 This statislic is a special case of D, since if C is chosen to be a subset orthe \:haractcristic vectors
of E, then CI;C is OJ diagon:ll matrix with the corresponding roots as diagonal entries. (Foos!l. 48) =
4.04.)
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TABLE 7

MICHIGAN: TEST STATISTIC AND ROOT AS A FRACTION OF THE SUM

1. Gross National .68 3.03 .06 .38 .04 .25 .34 .00 .01 .00 .51 .12
Product ($1958) .87 .08 .02 .01 .01 .00 .00 .00 .00 .00 .00 .00

2.
. •Implicit Deflator * 3.00 5.37 6.05 2.15 2.47 1.55 3.46 .99 1.23 .11 .13 .25

for GNP (1958=100) .90 .07 .02 .01 .00 .00 .00 .00 .00 .00 .00 .00

3. Consumption ($) 1. 37 1.43 .34 .29 .00 1.64 .09 •.04 .52 .93 .52 5.33
.91 .06 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00

4. Corporate Before- .02 .69 .02 3.08 .18 .04 1.06 .00 .07 .59 .14 .09
Tax Profits ($) .84 .09 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00

5. 1. 21 .01 • .40 2.48 ·Business Fixed* .45 .03 .01 1.06 .48 5.95 .00 12.11
Investment ($) .95 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00

6. Private Nonfarm .11 .92 .01 4.16• .49 1.07 .78 .33 .02 .02.20 .01
Housing Starts .73 .14 .06 .02 .01 .01 .01 .01 .01 .01 .00 .00

VI (000' s)
0
-..J . . •7. Corporate AAA. . 1.18 7.50 .18 .18 6.50 3.74 5.02 .34 1.85 .11 .57 .00

Interest Rate (%) .86 .07 .03 .01 .01 .01 .00 .00 .00 .00 .00 .00

8. Unemployment 2.39 1.98 1.47 .03 .03 .01 .59 .97 .01 .00 .38 .33
Rate (%) .90 .07 .02 .01 .00 .00 .00 .00 .00 .00 .00 .00

9. Change in Business 1.08 1.58 .03 .31 .04 .64 2.29 .54 1.15 3.65 .09 3.09
Inventories ($) .41 .19 .11 .08 .04 .03 .03 .02 .02 .02 .02 .01

10.
.

.50 .23 .01Output Per Manhour 5.07 .13 1.19 .03 .22 .45 .08 .10 .02
Nonfarm Index .92 .04 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00
1957-1959=100

11. Employment Rate 2.00 1. 24 1. 78 .10 .00 .06 1.01 .16 .01 .01 .09 .11
of Males (20 .... ears .90 .06 .02 .01 .00 .00 .00 .00 .00 .00 .00 .00
and Over (%»

12. . 88 4 .12
. •Residential . 32 .01 . 02 . 43 . 36 .40 .10 .18 .88 5 .55

Construction ($) . 79 .12 .05 .01 .01 .01 .00 .00 .00 .00 .00 .00

Note: Here and in Tables 8, 9, and 10, a .... " is affixed to any variable for which the M-period
F statistic (see Tables 2 and 3) exceeds the .05 critical value.



TABLE 8
FRB-MIT: TEST STATISTIC AND ROOT AS A FRACTION OF THE SUM

1. Gross Na t ional .00 1.84 .02 .87 .60 3.81 .31 1.35 .01
Product ($1958) .81 .13 .03 .01 .01 .00 .00 .00 .00

2. Implicit Deflator * 1.88 2.83 .29 .06 3.4949.41 .02 2.13 .59
for GNP (1958=100) * .88 .08 .02 .01 .01 .00 .00 .00 .00

3. Consumption ($) 1. 75 .12 .28 .68 .23 .00 .01 .12 .17
.86 .08 .03 .01 .01 .01 .00 .00 .00

4. Dividend Price .13 1. 76 .47 1.82 4.59 .01 1.03 .84 .54
Ratio (%) .72 .15 .16 .02 .01 .01 .01 .01 .01

* 1.59 .62 2.445. Commerc ial Paper 11. 37 .10 .14 4.02 1. 53 .23
Interest Rate (%)* .63 .18 .08 .03 .02 .02 .02 .01 .01

* *6. Corporate MA
*

22.60 3.60 .90 11.52 .07 5.09 2.22 .05 .46
Interest Rate (%) .77 .08 .05 .03 .02 .02 .02 .01 .01

7. Deposits at .01 .06 1.98 2.17 .44 .02 .46 .33 .22
5&L5 ($) .88 .09 .02 .00 .00 .00 .00 .00 .00

8. Corporate Before- .13 1. 27 .18 2.62 .22 2.15 .39 .02 .42
Tax Profits ($) .62 .. 22 .07 .03 .02 .02 .01 .01 .01

*9. Res idential .14 .42 .50 .68 2.34 1.62 .23 8.75 3.73
Construct ion ($) .67 .25 .06 .01 .00 .00 .00 .00 .00

* 3.0110. Producer 4.14 .01 .00 .11 1. 52 .88 1. 09 .27
Durables ($) .90 .07 .01 .00 .00 .00 .00 .00 .00

* * .04 8.30*11. Nonresidential 8.53 9.32 2.47 .04 .66 1.14 .07
Structures ($)* .85 .07 .03 .01 .01 .01 .01 .01 .00

12. Change in Business 1. 02 .08 .17 .00 .08 2.45 .04 .08 .03
Inventories ($) .40 .23 .09 .07 .06 .05 .04 .04 .03

* * * *13. State & Local* 11. 28 13.58 4.31 .01 .94 .21 5.47 .24 .04
Purchases ($) .82 .08 .03 .02 .01 .01 .01 .01 .01

14. Employed Civilian 1.28 .66 .02 .26 .81 2.74 1.83 6.09*1.54
Labor Force (mil. ) .91 .06 .01 .00 .00 .00 .00 .00 .00

15. Unemployment .37 2.64 .32 .18 2.23 3.11 .62 .02 .03
Rate (%) .85 .11 .02 .01 .00 .00 .00 .00 .00

16. (5) *Federal Taxes 5.11 2.78 2.72 3.01 .24 .04 .59 .17 .04
.70 .14 .05 .02 .02 .02 .02 .01 .01

first k test statistics in Tables 7 and 8, while the low variance test statistic is the
average of the remaining M - k. The former can be treated as F(k, s) and the latter
as F(M - k, s). Since the results for the FRB-MIT model (Table 10) are clearer
than those for Michigan, we discuss them first.
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For the FRB-MIT model, variilhles 2, 5, 6, II, and 13 did nol pass the nine
period test. None of these variables pass the joint test of the high variance linear
combinations, bnt all of them except variable 6 pass the joint test of the low
variance linear combmation. Thns the actual data seem to exhibit a low frequency
l:omponent with higher variance than the model itself. This can be interpreted
to mean that the real world differs from the model in the direction of a naive
model. Another way or stating this result is that the model tends to compensate
sllfikiently for high frequency autocorrelation but not for low frequency auto
correIa tion.

For the Michigan model where variables 2, 5, and 7 did not pass the twelve
period test, variables 2 and 7 fail the joint test of the high variance (low frequency)
combination and pass the joint test of the low variance (high frequency) linear
combination.

We also examincd the ellipsoid generated by several variables jointly. In
particular, we examined the characteristic vectors and values for the covariance
matrix for real GNP, the GNP deflator, and the unemployment rate." It would
have cOllveniently fit with our interpretation of the eigen vectors of single variables
as frequency components if the joint eigen vectors could have been described as
the components of the (3 x 3) correlation matrix for each frequency, with
(approximately) distinct frequencies uncorrelated. This, alas, was not the casco The
components of the single variables arc obviously correlated across components.
For example, the highest variance Uoint) component had (roughly) the same form
as in the single-variable analysis for the GNP and unemployment partitions, but
the price partition behaved in a manner similar to the second and third single
variable components. Indeed, we were not able to find any useful general inter
pretation of these joint components.

This completes our examination of linear combinations suggested by the
forecast distributions themselves. We now examine annual averages, a set of linear
combinations which might be considered or interest, a priori.

We present joint test results for all the variables for which quarterly forecasts
were tested in Tables 2 and 3. For the Michigan model. we test annual forecasts for
the first year, Ihe first two years jointly, and all three years jointly. For the FRB
M IT model we omit the first quarter of the forecast period and test annual averages
for 1969, and for 1969 and 1970 jointly. In each case, the test statistic is computed
using the relevant matrix C. The results are given in Table 1L

As a forecaster of annual averages, the Michigan model fails the test for the
whole forecast period, but passes it for one- and two-year horizons. While the
relative standing of the model for different horizons is the same as in Table 5, the
model is mOre consistent as a forecaster of annual averages. The Silme kind I)f
comparison cannot be made for the FRB-MIT model, because all joint tests on
quarterly forecasts were inclusive of 1968(4). Nevertheless, the poor showing of
FRB-MIT as an aHnual forecaster over 1969 and 1970 is not entirely surprising. In
the quarterly tests, the model did better forecasting only 1968(4) titan it did
forecasting for any longer period.

• for these computations, each variable was expressed as a ratio to its corresponding mean Core
cast, so that variances become coefficients of variation. etc.
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TABLE 9

MIClUGAN: HIGII AND Low VARIANCE TlST SHTISTlCS flV VARIADlf.

~hgh Vanance
Test Statistic

Low Variance
Test Statistic

I. Gross National Product (11958)
2. Implici! Deflatorfor GNP (1958 = 1(0).
3. Consumption IS)
4. Corporate Before-Tax Profits (S)
5. Business Fixed Investments (S)-
6. Private Nonfarm Housing Starts (OOO's)
7. Corporate AAA Interest Rate (~I,,).

8. Unemployment Rate ( ~~)
9. Change in Busin:ss Inventories (S)

10. Output Per Manhour Nonfarm Index
1957-1959 = 100

II. Employment Rate of Males (20 Years
and Over (%))

12. Residential Cons:ruction (S)

2
2
2
2
I
3
2
2
4

2
3

1.86
4.18·
1.40
0.36
1.21
0.35
4.34·
2.19
0·75

5·07·

1.62
0.12

0.17
1.84
0.97
0.53
2.09"
0.79
1.85
0.38
1·44

0.27

0.33
1.43

TABLE 10

FRB-MIT: HIGH AND Low VARIANCE TFST STATISTICS BV VARIABLE

I. Gross National Product (11958)
2. Implicit Deflator for GNP (1958-100)·
3. Consumption (I)
4. Dividend Price Ratio (%)
5. Commercial Paper Interest Rate (%).
6. Corporate AAA Interest Rate (%1·
7. Deposits at S&Ls (S)
8. Corporate Before-Tax Profits ($)
9. Residential Construction ($)

10. Product Durables (S)
II. Nonresidential Structures (S)
12. Change in Business Inventories (S)
13. State and Local Purchases (S)"
14. Employed Civilian Labor Force (mil.)
15. Unemployment Rate (~~)

16. Federa: Taxes IS)

k

2
2
2
3
4
3
2
4
3
2
2
4
2
2
2
3

High Variance
Test Statistic

0.92
24.72"
0.93
0.79
3.91·
9.03·
0.04
1.05
0.35
2.07
8.92·
0.32

12.43·
0.97
1.50
3.54·

Low Variance
Test Statistic

1.00
1.61
0.21
1.47
1.28
3.24·
0.80
0.64
2.89·
0.99
1.82
0.54
1.60
2.00
0.93
0.68

V. OTHER PROPERTIES OF THE FORECAST DISTRIBUTIONS

A. Nonstochastic Point Forecasts and Their Relationship to Mean Forecasts

We computed nonstochastic point forecasts, those minus mean forecasts, and
the standard errors of the mean forecasts, which we take to be the standard errors
offorccast in Tables 2 and 3 divided by the square root of 299---299 is the number
of Monte Carlo replications minus one. The nonstochastic point forecasts for each
model are obtained from a single endogenous simulation over the forecast period
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TABLE II

ANNUAl. JOINl TEST RESULTS

Michigan FRB-MIT

forecast Span F Forecast Span F

1968 1.67 1969 8.26·
1968-69 1.26 1969-70 /lAI"
1968-70 2.12"

with parameters and residuals set at their means: the parameters at their point
estimates, the residuals at zero. (These data are available upon request.)

For both models, there are some large discrepancies between points and
means. A single joint test for each model-to determine whether all the dis
crepancies could arise from sampling error attributable to the Monte Carlo
experiment--yields an F statistic equal to 4.85 for the Michigan model, and one
eq ual to 5.55 for the FRB-MIT model, in each case exceeding the relevant 5 percent
critical value. In a statistical sense, at least, points do not adequately represent
means, which is what one expects to find for any model other than one consisting
of estimated linear reduced-fonn equations. Of course, despite the high values of
the test statistics, one might still want to use the nonstochastic estimates because
they can be obtained more cheaply. The important point, though, is that such a
judgment would be hard to make before appraising the kind of discrepancies that
result for each model.

B. A Sequence of One-Quarter Forecast Distributions

The variation over time of the standard errors of forecast in Tables 2 and 3
could, in principle, be traced to two different sources. One involves the presence in
both models of lagged endogenous variables: the greater the forecast span, the
greater the number of lagged random disturbances affecting forecasts by way of
their effects on the values of lagged endogenous variables. The other involves
changes in average initial conditions: each standard error of forecast is a function
of the fixed values of the predetermined variables conditional on which the forecast
is being made. By analogy with linea r models, we expect standard errors offorecast
to be larger the more distant are the values of the predetermined variables from
their sample period means. And since most variables in these models are stated in
terms of levels, deviations of predetermined variables from their means can be
expected to increase with time during the forecast period.

In order to draw some inferences about the importance of each source of
variation. we computed standard errors of forecast from sequences of one quarter
simulations in which iagged endogenous variables are each quarter set equal to
act ual values. I 0 These standard errors offorecasts vary only because average initial
conditions change. Unlike those in Tables 2 and 3. they tend to increase only

10 These data are available upon request. Because we were missing data for many ofthe endogenous
variables for the FRB-MIT model for the: period 1969-{2) through 197Q-{4~ we performed one-period
simulations for that model only for the fir st three quarters of the forecast period.
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slightly as a [unction of time. Thus our suggestion that most of the increase in
variance in Tables 2 and 3 is attributable to the presencc of lagged endogenolls
variables seems !argely corrcct.

C. Residual Standard Errors

For a single linear equation, the forecast variance can be split into a slim
consisting of the residual variance and the variance of the mean forecast, whcre the
latter is attributable entirely to parameter estimate variance which approaches
zero as the sample size increases. The forecast variances we ha ve computed cannot
be split up in this way because structural parameters and residuals enter the reduced
form nonlinearly. Thus, if we had computed the variances of mean forecasts from
a set of simulation experiments in which only parameters were drawn randomly
and added them to the wrresponding residual variances computed from experi
ments in which only residuals were drawn randomly, we would not expect the sum
to equal the forecast variance. Nevertheless, it is of interest to examine the residual
variance, because it provides an estimate of the part of the forecast variance that,
in principle, is independent of the amount of data available and that can be reduced
only by altering the specification of the model.

Therefore, we computed the ratio of each residua! standard error to the
corresponding standard error of forecast from Tables 2 and 3. tt For both models,
the ratios tend to decline with time although the pattern is more consistent and
far more pronounced for the Michigan model. For example, consider the results for
rea) GNP in the ninth quarter of the forecast period for both models. While the
standard error of forecast is about 25 billion for both models (see Tables 2 and 3),
forthe Michigan model only about 50 percent is directly attributable to the structure
of the model and would remain no matter how large a data set had been available;
for the FRB-MIT model about 75 percent is attributable to the structure of the
model. The models differ more in this respect than in almost any other we have
examined.

VI. CONCLUDING REMARKS

As we hope is evident, our goal has not simply been to "test" two models.
Rather, it has been to illustrate the range of tests one can perform on an estimated
simultaneous equation model and the kinds of implications one can draw. It is
also our goal to provide something of a rationale for those tests and, hence, to
convince others they are worth performing. Since we have dealt throughout with
the situation of a post-sample period too short to allow for separate post-sample
estimation of the parameters, the only data requirement is that there be some post
sample data.

In closing, we would like to add one last caution about interpreting the results
of the kinds of tests we have performed. Passing such tests is more impressive the
more different is the forecast period from the base period in terms of the regimes

11 The residual variances were calculated from a set of simulation experiments similar in all
res~ects .to th~se underlying the statistics in Tables 2 and 3. except that parameters were held fixed at
their pomt es\lmates. The data are available upon request.
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generating the variables taken to be exogenous. If there are no grounds for
supposing those regimes to be different, the fact that a model passes such tests does
not imply a similar validity of its policy e\'aluation implications.

ApPENDIX I. PROPERTIE<; OF THE STATISTICS

A. With our particular models and small sample sizes, there are no available
tests with known optimality properties (in terms of power). Therefore, in choosing
both the general form of the test statistic, and the particular estimates and modifi
cations used, along with the distribution used to define the critical region, we have
been guided by known results for more simple models and asymptotic results for
a general class of models which include ours.

We have chosen to use a test which is a (modified) special case ofa general class
of tests for which the rejection region is given by

g'r.-Ig ~ rf~(r,s)

where
(i) g is an r-vector of estimable parameters of t.he joint distribution of the

endogenous variables y,
(ii) the null hypothesis can be stated as g = O. and

(iii) g and i: arc sufficiently good estimates of g and ~, respectively, made
without the null restrictions.

For the normal linear model with scalar covariance matrix, this is the classical
F-test which is a UMP invariant test. For the normal linear multivariate regression
model, a statistic of this type can be derived as the sum of invariant statistics;
however, only in special cases does a UMP invariant test exist. Lehmann [7] and
Rao [8J provide thorough treatments of these linear finite-sample-size models.

Wald [9) has shown that in an asymptotic sense, the above test statistic yields
a UMP invariant test for a wide variety of models and hypotheses including the
muliivariate model. The main requirements are that the estimates ofg be maximum
likelihood (or asymptotically equivalent to Ill.!.) and that i: be the estimated
asymptotic covariance matrix. Normality as such is not required. In the limit,
the statistic has a F(r, 00) or x2(r)jr distribution under the null hypothesis which
is used to set up the critical region.

Despite these results, we are painfully aware that our models are too distant
from the simple models (for which there are finite sample results) and our samples
too small to provide any rigorous justification at this time. Nevertheless, in our
judgment there are enough favorable indications to justify use of a modified form
of the above statistic if the alternative is a nonstatistical test. We now describe the
modified form.

B. The general hypothesis we wish to test is that the structural coefficient
values are the same in the "estimation" and "forecast" periods. The alternate
hypotheses are that those vaiues are different in the estimation and forecast periods.
In both cases we assume, and we emphasize this, that the distribution of the
structural disturbances remains the same. Thus, we would like to test the hypothesis
g == /32 - fJ I = 0, where fJ I and {32 are the structural parameters valid in the
estimation and forecast periods, respectively. However, in our case the forecast
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period is too short to allow estimation of the whole set ofcoefficients for that period.
Only certain functions of the parameters can be estimated.

We would like to find the maximum set or(functionalIy) independent functions
of the coefficients (including perhaps some parameters of the distribution of the
residuals) which are estimable. By estimable we mean that the equations obtained
by setting the first derivatives of the likelihood function (for the forecast period)
with respect to the new functions equal to zero have a solution and a negative
definite Hessian.

We know of no systematic and practical way of determining such a maximal
set of estimable functions. However, three possibilities (;Orne to mind. They are the
conditional expected values of the endogenous variables in the forecast period
conditioned on the values of the endogenous variables (a) before the estimation
period, or (b) before the forecast period, or (c) before each time for which a mean is
sought. These correspond to three different "reduced forms," different because we
are dealing with a system of difference equations. We chose (b) for reasons we wilI
discuss below.

We can now restate the hypothesis we wish to test as g == h«(12) - h«(1d = 0
where h is the conditional mean vector computed on the basis of (b). Defined this
way, the functions in h(P) are estimable and iffunctionalIy independent are maximal
since they make use of alI the forecast-period data. We suspect that functional
independence hinges largely on whether any of the structural equations can be
estimated on forecast-period data alone. If none can be, the functions in h(P) are
functionally independent; if some can be, there are dependencies. 12

A reasonable, in fact, unbiased estimate ofh«(12) is the vector ofactual values in
the forecast period so that g = Y2 - h(Pt), where h(Pt) is simply the vector of
reduced-form "mean forecasts" made on the basis of (b) using the estimation
period parameter estimates. 13

A further consequence of the shortness of the forecast period is that we cannot
estimate the covariance of g. The covariance matrix of h«(12)' which is a reduced
form covariance, depends on the structural covarianu: matrix of the residuals
(which we assume is unchanged and which can be estimated from the estimation
period) and on values of the coefficients (12 which are not estimable. We sidestep
this problem by computing the covariance matrix using the nulI hypothesis. This
gives us a type of prediction interval test.

There is one important consequence of using the null hypothesis to compute
the covariance ofg. Let L be the covariance under the null hypothesis and Vthat
under the alternate hypothesis (12 #= (11' Also let.1 = h«(12) - h(fJI) and assume for
the moment that h(Pd is an unbiased estimate of 11«(11) with negligible variance.

12 For a linear structure. we can prove the second part of the statement. For any structural equation
that can be estimated (with sufficient degrees of freedom to make it "worthwhile"~ the elements of
g(fil corresponding to the L.H.S. variable for that equation should be replaced by the parameters
themselves, with, of course, the required changes made in the covariance matrix.

13 As described in section II, we actually use as an estimate of hlP,) an expecloo value of hlPI)
where the expectation is over the distribution of PI' This differs from hlPl) only because in our case h
is non-linear in p. Given this difference, the expectation seems more consistent wi!h our view of the test
as a type of prediction-intervaltesl.
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Then, the expectation of our test statistic,

£(\'2 - h(fil))' I -\V2 - hIPI))

= E[tr I-I(Y2 - h({12) + A)(Y2 - h(f12) -+ A)']

= tr I-I(V + ~S).

Since {12 is not estimable, there arc a large number of III l' fJ I for which ~ = O.
Among these are almost certainly some for which V is very small, thus, implying
tr L- I V « r. This means that our test is biased in that there are values of {12 l' {l.
for which the null hypothesis is more likely to be accepted than for {12 = {l •.
However, the presence of the ~~' term means that values of fJ2 for which the test is
biased and which lie in the direction of increasing ~ are in a hounded region of 11.
(independent of V). For values of fJ2 which lie in a direction which leaves A un
changed, no bound can be given.

With regard to the choice among estimable functions conditioned on values
of the endogenous variables (a) before the estimation period, or (b) before the
forccast period, or (e) before each date for which a mean is sought, since the tcst
statistic is essentially a probability density function, if it were based on (a), it could
be written as (an integral of) a product 01 density functions: one based on (b), i.e..
conditional on the estimation period: the other giving the distribution of the
initial conditions at the end of the estimation period. Thus, it would seem that basing
the test on (a) rather than (b) would only add noise and lower the power of the test.
And, since we view the test as a prediction interval test, computing it based on (b)
seemed easier and more consistent.

Our choice of a distribution to compute the critical region was based on the
behavior of the simple and asymptotic cases mentioned above. An F distribution
for finite samples is consistent with a ··f asymptotically. In addition the simple
models indicate that an F might be an appropriate way to lakc account of the fact
that the covariance matrix must be estimated. 14

As an approximation to the "denominator" degrecs of freedom we use a
rough average number ofdegrees of freedom for our equations in the "estimation"
period. Because of our assumption of independence of residuals across equations,
we did not attempt to subtract the additional degrees of freedom due to inverting
an estimated covariance matrix as suggested by the multivariate simple model.

C. Computing our prediction interval test involves solving a large system of
simultaneous equations many times. Could not the test be done more simply
equation by equation? We think not.

14 We could have proceeded. in a sense, nonparametrical!y. by generating a distribution of the
statistic D under the null hYPoihesis. finding the 0.95 percentile point of the distribut ion. and rejecting
if D computed at the actual value of y ex..:eeds that point. For each different test. this would require
computations using the entire distribution of the solved·for is rather than simply the mean and
cova riance matrix.

At the prompting of our colleague. Professor Sims. we did examine certain one-variable-at-a-time
distributions. those plolted in Figures 1-4, to determine whether 5 percent critical regions determined
r.onparametrieally are very dlfferelll from those based on normality and whether any conclusions would
be different. We found no systematic differences between critical regions and in none of the cases
examined would OUt conclusions have been different.
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Consider a single equation from a set of simultaneolls equations, which, to
simplify the exposition, we assume to be linear and witholil lags:

n #;

f,(fJ, y) == YI t + L {Jd'kl + L }'kXkl = II,.
k~2 k~ I

Let ft, y be the estimation period coefficient estimates, il, = .Wl, yl, and il be the
vector of ur's from the forecast period, and consider a test statistic of the form

u'L-'u
with an appropriate L-

In order for a test based on this statistic to have good properties, we might
require Eu ~ 0 and L ~ EUfl, with the expectations conditioned on SOme
appropriate observations.

If we condition on the current values of the endogenous variables other than
YI, then, in general, Eli #- O. The idea is that conditioning on some endogenous
variables implies conditioning on some reduced-form residuals, which, in general,
are functions of u.

If, alternatively, we condition on the values of the endogenous variables in the
estimation period, we do have Eu ~ O. But then we must estimate L ~ Eu{l' with
the expectation conditioned on estimation-period values not current values.
Assuming, as an approximation, that pand yare unbiased and independent of u,
the (t, t') element of Euu' is, then,

a(t, t') = b(t, r')Eu; + tr[V(Ez(t)z(t')')]

where z(t) = (Y21' ... , Y." X I" ... , xKI), V is the covariance matrix of (P, y) and (j is
the Kronecker delta. But, since Ez(t)z(t')' is, then, an expectation conditional on
estimation period values not current values, it depends on the whole system of
equations. We are thus led back to the same computations we set out to avoid.

ApPENDIX II. ADDITIONAL COMPUTATIONAL DETAILS

A. Check/or Strange Runs

The models we deal with are nonlinear. The solution procedure, the Gauss
Seidel iterative routine, finds a solution, but it may not be the only solution. As
illustrated by Friedman [4], there is no guarantee that quarter by quarter the
solution is not switChing, say, between alternative roots of a quadratic equation,
The procedure outlined below is designed to discover such anomalies. It identifies
runs in which the path over time of any variable exhibits unusually large jumps or
oscillat ions.

LeI Yj(t) be the solved-for value of the i-th variable at date t in a particular
simulation run. Let x;(t) = Yj(t) - jW) -. [Y,{t - I) - JW - I)] where Yj(O) = y/(O)
-the actual value of the i-th variable in the last quarter of the estimation period
and where for t > 0, y~t) is the mean forecast of the i-th variable at the t-th quarter.
The variance of x,1t) is J~{t) = S/(:, t) + Sj(t - I, t - I) - 2S;(t, I - I), where
Sj(a, b) is'the covariance of the i-th variable between quarters a and b. We compute
the ratio

R(i, t) = Ix.{t)I/[ JI;{t)] li2
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which we expect to be large for runs for which the solution routine is oscillating
quarter by quarter between different multiple solutions.

Since for Michigan we examine results for 12 variables over twelve quarters
and for FRB MIT re~;uits for 16 variables over nine quarters, and since for each
model we performed 300 simulations, there are 43,200 observations on R for each
model. The distribution of R for each model is summarized below along with what
would be implied by normality for R.

41,272
1,811

103
8
6
o

-----r-----~TeqUenCy

_1_n_le_Tv_a_1__-+-_M_i_Ch_ig_a_n----1~FRB-M~~alitY
41,237 I 41,271

1,814 1,853
140 74

9 2
o 0
o 0

~2.0

2.~3.0 I
3.0-4.0
4.0-5.0

5.(}6.0~
6.0-

------'-

Since the results are closely in accord with what we would expect from a
normal distribution for x, we concluded that there were no "strange runs" among
our simulations.

B. Coding Checks

Since the computer programs that were written to solve the Michigan and
FRB-MIT models were not designed for our computations, it was necessary to

add a significant amount of new coding. Our computations required two major
programming additions: the first was to include a stochastic residual in each
structural equation which was consistent with the form of the estimated equation;
the second was a subprogram that generated random coefficients and residuals
consistent with the distributions implied by estimation.

To check our residual coding and the randomization procedure, a program
was written to generate for the estimation period 100 sets of stochastic predictions
of the dependent variables and a nonstochastic set. For each equation we generated
predictions using actual values of right-hand side endogenous variables and then
calculated two statistics: a residual variance

{j2 = (y _ y)'(y _ y)!(N - k)

and the ratio

1 100

R = -- L (}'i - PHy, - y)!fj2
lOON 1=1

where y is the (N x 1) vector of actual values of a dependent variable, over the
estimation period, y the corresponding vector of nonstochastic single-equation
predicted values, and .Vi the vector of stochastic single-equation predicted values
generated using the i-th set of random coefficients and residuais. Nand k are the
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number ofobservations used in estimating the equation in question and the number
of independent variables, respectively. If the original coding was corrccL 8 2 should
equal the residual variance reported in estimation. If our new coding is correct,
the ratio R can be treated as F[(100)N, N - k].

In both models these statistics proved helpful in detecting and locating
numerous errors that were bound to occur in a project of this size. For example, in
a number of equations the residuals were improperly coded causing R to range as
high as 1000.

C. Random Values of tire Serial Correlation Coefjiriellt

In the FRB~MIT model, a number of equations were corrccted for serial
correlation by taking partial first differences using an estimated first-order auto
correlation coefficient. Therefore, just as with all other estimated parameters, it
was necessary to pick values of the autocorrelation coefficient consistent with the
distribution implied by estimation.

Hildreth [5] has shown that the maximum likelihood estimator, p, is asymp
totically uncorrelated with alI other estimated parameters, is asymptotically
unbiased, and has asymptotic variance (1 - (2),!N, where N is the number of
observations. Based on that result and on the constraint that p lies in the interval
(0, 1), we constructed an approximate distribution for p as follows.

Define

* - I
p - I+~!A+BX

where X is distributed normally with mean zero and variance one. Clearly, p* is
confined to the interval (0, I). The problem is to find values of A and B such that,
E(p*) = Pand V(p¥) = (l - pl)/N. To approximate such values, we used a series
approximation to p*, denoted r*; where r* consists of the first two terms of a
Taylor expansion of p* about the mean of X :

* 1 BeA B2cA(e A
- I)

r =-- '- X + ------X2

1 + c 4 (I + eA
)2 2(1 + CA)3 '

Since X is normal,

I B2eA(eA
- 1)

E(r*) = 'I + e.4 + 2(1 + e.4)3 ~

* _ (Be
A

)2. J B
2
e

A
(e

A
- ilJ 2

V(r ) - (I + e,1)4 + Ll-2(l +?yr-

Setting E(r*) equal to the estimated mean, p, and V(r*) equal to the estimated
variance, (I - (2)/N, the resul!ing equations can be solved for A and B.

The approximation was checked for different fi's by drawing samples of
500 p*'s and calculating sample means and variances. It was found that for pclose
to one, the approximation was poor; for p's greater than 0.9, the sample variances
exceeded (I - (2)/N by more than 20 percent. That led us to try a third-order
Taylor expansion for p*. With the third-order approximation, for p less than 0.98,
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sample means and variances differed from the actuals by Icss than 5 percent.
However, for Ifs greater than 0.98, the approximation was still poor. Therefore,
for the two equations with lJ's in excess of 0.98, we assumed zero variance as one
would if first differences had been taken.
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