24,378 research outputs found

    How Far is UP? Encouraging social interaction through children's book app design

    Get PDF
    Historically picture books have been a social medium, an item understood by a combination of child and adult readers. Book apps are a new format for picture books. These items do not commonly require an adult co-reader; the audio narration 'reads' the text to the child. How Far is UP? is a children's book app designed to foster social engagement. Through interacting with the work users uncover text that contains different information to the audio narration. Pre-literate audience will not be able to comprehend the textual aspect of the narrative. Children will require an adult to read the text aloud and to discuss the content so that together they can formulate deeper narrative meaning. This study draws on children's literary theory with the view to uncovering ways in which interactive digital storybooks can entertain, educate and foster meaningful social, intergenerational bonding

    Observation of opto-mechanical multistability in a high Q torsion balance oscillator

    Full text link
    We observe the opto-mechanical multistability of a macroscopic torsion balance oscillator. The torsion oscillator forms the moving mirror of a hemi-spherical laser light cavity. When a laser beam is coupled into this cavity, the radiation pressure force of the intra-cavity beam adds to the torsion wire's restoring force, forming an opto-mechanical potential. In the absence of optical damping, up to 23 stable trapping regions were observed due to local light potential minima over a range of 4 micrometer oscillator displacement. Each of these trapping positions exhibits optical spring properties. Hysteresis behavior between neighboring trapping positions is also observed. We discuss the prospect of observing opto-mechanical stochastic resonance, aiming at enhancing the signal-to-noise ratio (SNR) in gravity experiments.Comment: 4 pages, 5 figure

    Fine Structure of the 1s3p ^3P_J Level in Atomic ^4He: Theory and Experiment

    Full text link
    We report on a theoretical calculation and a new experimental determination of the 1s3p ^3P_J fine structure intervals in atomic ^4He. The values from the theoretical calculation of 8113.730(6) MHz and 658.801(6) MHz for the nu_{01} and nu_{12} intervals, respectively, disagree significantly with previous experimental results. However, the new laser spectroscopic measurement reported here yields values of 8113.714(28) MHz and 658.810(18) MHz for these intervals. These results show an excellent agreement with the theoretical values and resolve the apparent discrepancy between theory and experiment.Comment: 9 pages, 3 figure

    Low Energy States of 3181Ga50^{81}_{31} Ga_{50} : Elements on the Doubly-Magic Nature of 78^{78}Ni

    Get PDF
    Excited levels were attributed to 3181^{81}_{31}Ga50_{50} for the first time which were fed in the β\beta-decay of its mother nucleus 81^{81}Zn produced in the fission of nat^{nat}U using the ISOL technique. We show that the structure of this nucleus is consistent with that of the less exotic proton-deficient N=50 isotones within the assumption of strong proton Z=28 and neutron N=50 effective shell effects.Comment: 4 pages, REVTeX 4, 5 figures (eps format

    In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances

    Get PDF
    Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining optimal sensitivity and maximizing the duty-cycle of the detectors

    Near-field radiative heat transfer between macroscopic planar surfaces

    Get PDF
    Near-field radiative heat transfer allows heat to propagate across a small vacuum gap in quantities that are several orders of magnitude greater then the heat transfer by far-field, blackbody radiation. Although heat transfer via near-field effects has been discussed for many years, experimental verification of this theory has been very limited. We have measured the heat transfer between two macroscopic sapphire plates, finding an increase in agreement with expectations from theory. These experiments, conducted near 300 K, have measured the heat transfer as a function of separation over mm to ÎĽ\mum and as a function of temperature differences between 2.5 and 30 K. The experiments demonstrate that evanescence can be put to work to transfer heat from an object without actually touching it

    Fluctuations, Saturation, and Diffractive Excitation in High Energy Collisions

    Full text link
    Diffractive excitation is usually described by the Good--Walker formalism for low masses, and by the triple-Regge formalism for high masses. In the Good--Walker formalism the cross section is determined by the fluctuations in the interaction. In this paper we show that by taking the fluctuations in the BFKL ladder into account, it is possible to describe both low and high mass excitation by the Good--Walker mechanism. In high energy pppp collisions the fluctuations are strongly suppressed by saturation, which implies that pomeron exchange does not factorise between DIS and pppp collisions. The Dipole Cascade Model reproduces the expected triple-Regge form for the bare pomeron, and the triple-pomeron coupling is estimated.Comment: 20 pages, 12 figure

    Circuit Theory

    Get PDF
    Contains reports on three research projects

    Evidence for virtual Compton scattering from the proton

    Get PDF
    In virtual Compton scattering an electron is scattered off a nucleon such that the nucleon emits a photon. We show that these events can be selected experimentally, and present the first evidence for virtual Compton scattering from the proton in data obtained at the Stanford Linear Accelerator Center. The angular and energy dependence of the data is well described by a calculation that includes the coherent sum of electron and proton radiation

    \pi N and \eta p deexcitation channels of the N^* and \Delta baryonic resonances between 1470 and 1680 MeV

    Full text link
    Two reactions, pp->ppX and pp->p\pi^+X, are used to study the 1.47<M<1.68 GeV baryonic mass range. Three different final states are considered in the invariant masses: N^* or \Delta^+, p\pi^0, and p\eta. The last two channels are defined by software cuts applied to the missing mass of the first reaction. Several narrow structures are extracted with widths \sigma(\Gamma) varying between 3 and 9 MeV. Some structures are observed in one channel but not in others. Such nonobservation may be due either to the spectrometer momenta limits or to the physics (e.g. no such disintegration channel is allowed from the narrow state considered). We tentatively conclude that the broad Particle Data Group (PDG) baryonic resonances N(1520)D13, N(1535)S11, Delta(1600)P33, and N(1675)D15 are collective states built from several narrow and weakly excited resonances, each having a (much) smaller width than the one reported by PDG.Comment: 29 pages, plus 50 (.png) figures Will be published in a slightly reduced size in Phys. Rev.
    • …
    corecore