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A. RC BRIDGE OSCILLATORS

The use of RC bridge networks for tuning purposes is widespread. In particular,

oscillators and feedback amplifiers in the low-frequency range use RC tuning more than

LC tuning because of the simplicity and wide range afforded. The research reported

here is a study of RC bridge oscillators operating as linear harmonic oscillators.

Consider the block diagram of Fig. XVIII-1 where the RC bridge is taken as a Wien

bridge, or any of its possible modifications arising from the interchange of the branches,

reversal of the polarity, and so on. The amplifier is assumed to have a gain K, n high

cutoff frequencies, and n low cutoff frequencies (or the equivalent). Furthermore, two

limiting cases of input-output impedances are considered: one has an infinite input

impedance and a zero output impedance; the other has a zero input impedance and an

infinite output impedance.

The first system that we shall consider is shown in Fig. XVIII-2, where R 3 or R 4,

or both, are temperature-sensitive (thermistor or varistor), and the amplifier has a

voltage gain K with the equivalent frequency response of n RC coupled stages. The

voltage transfer function of the bridge is

E. R
a(s) in 1 4

Eout (1 + C /C l + R 1/R 2 ) + RC 2 s + /R2 1s R3 + 4  (1)

The amplifier voltage gain is

K
K(jw) = on (2)

n li
h 1 + j 1- j -)

i= 1 hi

The loop gain G(jw) for the oscillator system is then

G(jw) = a(jw) K(jw) (3)

Several cases arise: positive or negative Ko, positive or negative a(jO), increasing or

decreasing value of R 4 /(R 3 + R 4 ) as Eout increases, different values of n, and identi-

cal or different cutoff frequencies for each stage.

For Ko positive, a(jO) positive, and identical cutoff frequencies, the Nyquist plots

for w = 0 to w = oo are shown in Fig. XVIII-3a, b, c, and d for n = 0, n = 1, n = 2, and

n = 3. For n = 0, the Nyquist plot is a circle; and if R 4 /(R 3 + R 4 ) increases with an

increase in Eou t , the circle will shift to the left until it sits on 1 + jO. The stableouts
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Fig. XVIII-I. Block diagram of RC
bridge oscillator.
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Fig. XVIII-3. Nyquist plot of G(jw) for positive Ko and positive a(jO).0

Fig. XVIII-4. Nyquist plot of G(jw) for positive K o , positive a(jO), and
widely different cutoff frequencies.

n=O



(XVIII. CIRCUIT THEORY)

frequency of oscillation is w = (R 1R 2 C 1C2)-1/2 0. If R 4 /(R 3 + R 4 ) decreases as Eout
increases, the circle always encloses 1 + jO. For n = 1 and n = 2, stable oscillation at

W = Wo is obtained if R4/(R3 + R4) increases with an increase in E out Otherwise, the

systems are unstable and eventually lead to nonsinusoidal oscillations. For n = 3, or

more, and for ordinary values of gain (anticipating that the system might work when the

bridge is almost balanced), the system is unstable no matter what type of temperature

dependence R 3 or R 4 might have (1). For very low values of Ko it might be possible to

produce stable oscillation, but the frequency of oscillation is a very strong function of

the cutoff frequencies rather than RR C IC 2. The operation is essentially that of a

phase-shift oscillator.

If the cutoff frequencies are not identical, it is possible to produce stable oscilla-

tion at w = w for n = 3, or more. However, the requirements are more stringent:

(n - 1) or (n - 2) of the amplifier stages must not have noticeable phase shift until the

attenuation through one or two stages is of the order of the reciprocal of the amplifier

gain K . Of course it is understood that the cutoff frequencies of the other two inter-

stage networks are far from the operating range of the oscillator, so that their phase-

shift contribution is negligible in the operating range. A typical Nyquist plot might look

like Fig. XVIII-4. Thus, for a system using a 3-stage amplifier, if the desired fre-

quency of operation is around 1000 cps, one or two of the stages might have a high cut-

off frequency of 100 kc; and if the nominal gain Ko is around 1000, then the third high

cutoff frequency should be of the order of 50 mc' If the gain Ko is made higher, the fre-

quency spread is even larger. As to the lower frequency cutoff, one or two of the

stages might have a cutoff of 10 cps, and the third stage must have a cutoff of approxi-

mately 0. 02 cps! The use of more than two stages imposes an unusually large require-

ment on the bandwidth of the additional stages. And making all the stages wideband

(cutoff frequencies almost identical) is not any better: the resultant system will not work

as a bridge oscillator'

For positive Ko and negative a(j0), the Nyquist plots are shown in Fig. XVIII-5a, b, c,

and d. For n = 0, n = 1, and n = 2, oscillation is impossible. For n = 3 or more, it is

possible that the Nyquist plot will enclose 1 + jO at least once and oscillation will start

to grow. If R 4 /(R 3 + R 4 ) increases with an increase in Eout , 1 + j0O will always be

enclosed; the system is then unstable. If R 4 /(R 3 + R 4 ) decreases with an increase in

E ou t , then the intersections on the positive real axis move to the left, while the inter-

section on the negative real axis corresponding to w = w moves to the right. The pro-

cess continues until 1 + j0O is on the Nyquist plot without being enclosed. This happens

when the gain is unusually low or when the cutoff frequencies are not made identical in

such a manner that 1 + j0O is almost sitting on the Nyquist plot to start with. The fre-

quency of stable oscillation is very much a function of the cutoff frequencies. If the gain

is appreciable or if the stages are identical, a(jO) might reverse its sign during the



(XVIII. CIRCUIT THEORY)

G - PLANE

I+jo

(a) (b)

G-PLANE

n=3

Fig. XVIII-5. Nyquist plot of G(jw) for K n positive, and a(jO) negative.
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Fig. XVIII-6. Nyquist plot of G(jw) for K0 negative and a(jO) negative.

process so that the intersection corresponding to wo is on the positive real axis. This

intersection will eventually move to the right of 1 + jO, and it will always remain inside

the Nyquist plot; the system is then unstable.

For negative Ko and negative a(jO) the Nyquist plots are shown in Fig. XVIII-6a, b, c,

and d. For n = 0, if 1 + jO is enclosed to start with, and if R 4 /(R 3 + R4 ) increases as

E increases, the circle will move to the right until 1 + jO just sits on it. The stable
frequencyt (R/2frequency of oscillation is 0 = (R1R CIC) . If R 4 /(R 3 + R 4 ) decreases with an
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increase in Eout' the circle moves to the left, reversing the sign of a(jO) if necessary

until 1 + jO sits on it. The stable frequency of oscillation is either zero or infinity.
For n = 1 or more, and if I + jO is enclosed to start with, oscillations will grow. If

R4/(R3 + R 4 ) increases as Eout increases, 1 + jO will always remain enclosed. Making

R4/(R3 + R4) decrease as Eout increases will produce a stable system, but the frequency

of oscillation will be strongly dependent on the cutoff frequencies, whether or not they
are identical.

When Ko is negative and a(jO) is positive there will be a similar result: the system

will be stable only if R 4 /(R 3 + R 4 ) decreases as Eout increases, whether or not the

interstage networks are identical.

Modification of the Wien bridge by all possible interchanges of the branches was

found to be unsatisfactory in the sense that the stable frequency of oscillation (if there is

any) is either a strong function of the cutoff frequencies, amplifier phase shift, or all
of the elements in the bridge, including the thermal elements.

If the amplifier is assumed to have zero input impedance and infinite output imped-

ance, the Wien bridge input and output terminals could be reversed, and all of the

results previously derived will apply to this dual termination case (1, 2).

The stability of the frequency with respect to variations in amplifier phase shift and

amplifier gain, and the stability of the amplitude with respect to variations in amplifier

gain were all found to be directly proportional to the magnitude of amplifier gain. Thus,

it might be desirable to use more than two amplifier stages even at the expense of
reduced frequency range. For a detailed derivation of the expressions for the stability

of frequency and stability of amplitude, see reference 1.

J. B. Cruz, Jr.
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B. DESIGN OF A CATHODE-RAY TUBE FOR HIGH-SPEED ANALOG

MULTIPLICATION

1. Introduction

The advent of the electronic analog computer established the need for a multiplier

with electronic inputs. There are many ways of accomplishing electronic multiplication.

In the present design (1), the potentiometer is used for multiplication, its resistance

being a resistive strip that is used as a target in a cathode-ray tube, the variable tap
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Fig. XVIII-8. Block diagram of the multiplier.

of the potentiometer corresponding to the electron-beam in the tube. The target is made

by evaporating a resistive material (chromium was used) on a glass disc. The tube

parameters used for multiplication are beam current and beam deflection. The output

of the multiplier is the voltage across the resistive strip.

2. Discussion

The operation of the multiplier can be best understood by considering its current

divider, shown in Fig. XVIII-7. The current I flows out of the movable tap of the

potentiometer 2R . The displacement per cent x of the movable tap is measured from

the electric center of the potentiometer resistance 2R ; it increases to 100 per cent

at either end of the resistance.

The output voltage eo is given (2) by the equation

e = - R-+- I x

It is clear that the output voltage eo is proportional to the product of the current

I and the displacement per cent x. Since the grid voltage on the cathode-ray tube

is proportional to the beam current, it is used as one input to the multiplier. The

voltage on the deflection plates is used as the other input. Figure XVIII-8 is a
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block diagram of the multiplier.

In the current divider the current I can flow in both directions, but in the cathode-

ray tube the current can flow only from the target to the electron gun. In order to

accommodate negative voltages at the grid input, it is necessary to bias the grid to get
some steady-state value of beam current. The positive and negative input voltages
correspond to an increase and decrease in beam current from the steady-state value.
The output voltage caused by the steady-state beam current will vary as the deflection
voltage. Therefore, if some proportion of the deflection voltage is subtracted from the
output voltage, we have an output voltage eo that is proportional to the product of the
incremental grid voltage V1 and the deflection voltage V 2 . The output is positive when
the inputs are both positive or both negative. The output is negative when the inputs
have different signs. The details of the design and construction of this multiplier are
covered in reference 1. The use of feedback for linearization is also discussed there.

3. Conclusions and Recommendations

The multiplier, without the use of feedback, was accurate to within 0. 04 per cent

of the maximum output. The addition of feedback might improve the accuracy to within
0. 004 per cent if the increased feedback did not cause oscillation. However, no tests
were made with the feedback.

The frequency response was limited by the external amplifiers. The difference

amplifiers used had a high-frequency response of 10 kc; at higher frequencies the phase
shift caused inaccurate subtraction. Careful design and construction of these amplifiers
might give a frequency response from zero to 1 mc.

Further study of this multiplier must be made in order to perfect it. Theoretically,
it can operate over a wide frequency range with very good accuracy.

J. F. Mueller
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C. SOME LIMITATIONS OF AMPLIFYING DEVICES

A study was undertaken to determine how the characteristics of an amplifying device

limit the performance that can be achieved from circuits constructed from these devices

and passive circuit elements. The first step was the investigation of the gain-bandwidth

limitations of an amplifying device operating with signals small enough for linear analysis.
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1. Representation of Characteristics of Amplifying Devices

In the present discussion, it is assumed that all amplifying devices can be described

by linear differential equations in such a manner that terminal voltages and currents can

be related by a hybrid matrix. The term "amplifying device" refers to any multi-

terminal circuit element which, when used in conjunction with dc power supplies and pas-

sive circuit elements, is capable of effecting power gain from a source to a load. Both

real and imaginary parts of the hybrid parameters will, in general, be frequency-

dependent; it is assumed that these variations are known for the band of frequencies in

which the amplifying device is useful.

Other workers made detailed studies of the limitations of a device that is described

by a single-frequency hybrid matrix; they determined quantities such as maximum

available power gain, input and output impedance, and unilateral power gain. The pres-

ent study attempts to determine how the frequency-dependent terms limit the ability

of a device to provide high gain and rapid response simultaneously.

If we consider only relatively low frequencies, a hybrid parameter can usually be

expanded in a Taylor series of the form

h = + hs+h . . . (1)

where the zero-order term, ho, is the dc resistance, conductance, or dimensionless

ratio; and the higher-order terms determine the frequency-dependent behavior. If we

restrict the frequency range sufficiently, we can usually neglect the second-order terms,

but, even though the first-order terms may be small they appear to be the determining

factors in limiting high-gain, wideband operation. In this study, therefore, it is

assumed that all hybrid parameters can be approximated by the ho and h I terms alone.

In terms of this approximation, we have

h = ho + h s ; h h s=0 h 1 dhs=O (2)

2. Energy and Power in an Amplifying Device

If we define the independent voltages and currents by the matrix [X] and the depen-

dent variables by [Y], we can write

[Y] = [H][X] = [Ho][X]+ [Hl]s[X] (3)

where [H] is the dc hybrid matrix, and [H 1] is the matrix describing the first-order

frequency dependence of [H]. Recognizing that [xt][y] is the instantaneous rate of energy

dissipation, we see that the energy consumed in a time interval T is given by
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T X(t=T)

[W] = [Xt][Ho][X]dt + [Xt ][H1 [dX (4)

0 x(t= 0)

The first term on the right in Eq. 4 is interpreted as the energy dissipated by the

device, since it is irrecoverable and depends on the resistive parameters and the length

of time during which the voltages are applied. The second term is interpreted as the

stored energy, since it depends on the voltage and current variables at the start and end

of the time interval but not on the length of time the signals are applied. If [H'] is

symmetric, Eq. 4 can be written

Energy supplied = Energy dissipated + Change in energy stored (5)

Energy dissipated = h xix dt ; Energy stored = h. x.x. (6)

If [H l ] is not symmetric, the problem is more difficult because the change in energy

stored depends on the way in which the voltage and current variables are changed.

Equation 6 is still correct, however, if we interpret energy stored as the average

exchange of energy involved in going from one state to another and back again by an

identical process. Thus, if we supply one unit of energy to charge a network and remove

three units of energy when discharging it, the stored energy according to Eq. 6

would be two units. This interpretation of stored energy simplifies to [I][L][I]/2 and

[V][C[v]/2 for simple capacitive and inductive networks but has a more general inter-

pretation for nonreciprocal networks.

If the device is to be capable of effecting power gain, it is apparent that we must be

able to adjust the terminal voltages and currents so as to dissipate a negative power;

in other words, the amplifying device must supply a net incremental power to the exter-

nal circuit. To change the power supplied we must change the energy stored, which,

in turn, requires time if the power levels are always finite. The inability to change

power levels instantaneously is, in essense, the limitation on speed of response of an

amplifier.

If we compute the ratio, R, of power dissipated to energy stored, we see that

R2 [Xt] [Ho [X] (7)

where the numerator and denominator of R are assumed to be expanded in quadratic

form. If we now attempt to maximize R by adjusting the ratios of the terminal voltages

and currents, it is easily shown that M, defined as the maximum possible ratio of

power output to twice the energy stored, is given by the largest root of Eq. 9.
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M = - (-R)ma = Maximum power output per unit energy stored (8)

[Ho + Hot] + MEHI + Hit] = 0 (9)

3. Dependence of Transient Response on Energy Storage

The parameter M, defined as in Eq. 8, is important in limiting the power gain that

can be achieved by an amplifier with a given transient response. If we attempt to build

a power amplifier utilizing a particular amplifying device and arbitrary passive coupling

it is of interest to determine how the device characteristics limit the realizable gain.

The definition of M and the knowledge that passive circuits can only dissipate and store

positive energy make it apparent that the amplifier cannot have a larger M than the

devices used to build the amplifier have. This idea is illustrated by a simple example.

If we attempt to build a voltage amplifier with input admittance gl + sC1, output

admittance g2 + sC2 , and forward transconductance gm, the [Ho] and [H 1] matrices

will be

gl 0 C
[Ho]= [ ]HI 

1  (10)
gm g 0 C

and M will be given by

2
4(gl + MC 1 ) (g 2 + MC) = gm (11)

If we insist that the M of the amplifier cannot exceed a value determined by the char-

acteristics of the devices used to build the amplifier, it is readily seen that the maxi-

mum gm is given by

gm= 2 [(gl + MCl)(g 2 + MC 2 )]1/2 (12)

If these amplifiers are connected in cascade so that the input admittance for one stage

is the load admittance on the previous stage, we see that

gm
K = + = Steady-state voltage gain per stage (13)

v gl + g2

W = + C2 - Half-power bandwidth per stage (14)

Furthermore, we have the limiting relations
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(K v - 1)W = M, if gl - g2 = M(C 2 - C 1 ) (15)

(K v - 1)W < M, if gl - g 2 A M(C 2 - C 1 ) (16)

so that M is a kind of maximum available gain bandwidth product. It should be noted,

however, that M represents a device limitation that ideal circuit design cannot hope to

circumvent. The fact that M is the gain minus one multiplied by the bandwidth instead

of the usual gain-bandwidth product can be attributed to the fact that an ideal amplifier

does not waste power in the coupling circuits but rather adds the input voltage to the out-

put so that the actual gain contributed by the device is only K - 1.

If the amplifier is to be constructed from vacuum tubes described by

[HO]= ; [H 1  C g -C
[H 0 0 gH m g (17)Ho=H , P = (17)

gm g -C C P p

gm/2 gm/2M =; / >> 1 (18)
1/2 FC 11/2

(Cm +Cg/)+ [(C m +C g/)2 +C gCp - C2 Cm +  C Cp

we know that the best circuit design cannot produce more voltage gain per stage than is

given by Eq. 15 with M as given by Eq. 18. In principle, it is immaterial whether we

use triodes or pentodes, since the only important parameter is M. If there is grid-to-

plate capacity, this can be neutralized with an external feedback network so that a triode

and pentode with the same M will have the same input and output capacitance and zero

effective grid-to-plate capacitance when properly neutralized. The only advantage of

using a pentode in a wideband amplifier is the inherent neutralization that makes

possible simplified circuit design.

To achieve the optimum response given by Eq. 15, we must couple from one stage

1/21to the next with a transformer-turns ratio of (C /C )1/2 and neutralize with a feedbackcapacitor of value C (C /C)1/ . Under these conditions, we find that (K - 1)W = M
m g g1/2 obut unfortunately we are obliged to settle for a Ky of (C p/C ) The only convenient

way to reduce the gain and increase the bandwidth is to use a load resistor in the inter-

stage network. Ideally we would like to vary the . of the tube without changing the M

but this appears to be difficult; nevertheless, it would seem worthwhile to investigate

the problem of building high M tubes with a low p. so that we need not resort to distri-

buted amplifiers for wideband operation. The distributed amplifier is inherently ineffi-

cient because the gains are additive instead of multiplicative and we shall necessarily

fall short of optimum performance. The major difficulty is that we do not have anything

approaching an ideal gyrator for use in coupling circuits and we cannot add the input

100
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power to the output without destroying the unilateralness of the amplifier.

The significance of the parameter M was investigated in some detail for a number

of devices and circuit configurations. A more detailed report is being prepared. An

important feature of the analysis described above is that the frequency variable s can be

replaced by the variable sl = s - s where so is the center frequency of a tuned ampli-

fier. If we now determine [HO] and H'] at the frequency s o and apply the complex-

power theorem, it is possible to determine M at the frequency s o . In general, an

amplifying device will have an M-versus-frequency plot that is positive for only a limited

band of frequencies. If M = Mo at a frequency so = jio, M is a measure of the gain-

bandwidth limitations of a narrow-band amplifier tuned to wo; if M is negative it is not

possible to build an amplifier with power gain. If we construct a single-time-constant,

narrow-band amplifier with a center frequency wo, we can increase the gain with posi-

tive feedback. But in the limit, as the feedback is increased the gain approaches infin-

ity and the bandwidth approaches zero in such a way that the product is always less than

M.
o

In this discussion the energy stored in an amplifying device is related to the problem

of building wideband, high-gain amplifiers. The parameter M, defined as one-half the

maximum power that can be delivered by a device per unit energy stored in the device,

is found to be a convenient measure of the gain-bandwidth capabilities of the device.

M expresses an inherent device limitation and, therefore, can be used to compare the

capabilities of various devices or to determine the effectiveness of a circuit in realizing

optimum performance. The parameter M can be determined as a function of frequency

and can be used to determine items such as voltage gain-bandwidth products, allowed

frequencies of oscillation, and optimum methods of neutralizing internal feedback.

R. D. Thornton
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