19 research outputs found

    Safety, tolerability, and efficacy of maralixibat in adults with primary sclerosing cholangitis: Open-label pilot study

    Get PDF
    BACKGROUND: Primary sclerosing cholangitis (PSC) is frequently associated with pruritus, which significantly impairs quality of life. Maralixibat is a selective ileal bile acid transporter (IBAT) inhibitor that lowers circulating bile acid (BA) levels and reduces pruritus in cholestatic liver diseases. This is the first proof-of-concept study of IBAT inhibition in PSC. METHODS: This open-label study evaluated the safety and tolerability of maralixibat ≤10 mg/d for 14 weeks in adults with PSC. Measures of pruritus, biomarkers of BA synthesis, cholestasis, and liver function were also assessed. RESULTS: Of 27 enrolled participants, 85.2% completed treatment. Gastrointestinal treatment-emergent adverse events (TEAEs) occurred in 81.5%, with diarrhea in 51.9%. TEAEs were mostly mild or moderate (63.0%); 1 serious TEAE (cholangitis) was considered treatment related. Mean serum BA (sBA) levels decreased by 16.7% (-14.84 µmol/L; 95% CI, -27.25 to -2.43; p = 0.0043) by week 14/early termination (ET). In participants with baseline sBA levels above normal (n = 18), mean sBA decreased by 40.0% (-22.3 µmol/L, 95% CI, -40.38 to -4.3; p = 0.004) by week 14/ET. Liver enzyme elevations were not significant; however, increases of unknown clinical significance in conjugated bilirubin levels were observed. ItchRO weekly sum scores decreased from baseline to week 14/ET by 8.4% (p = 0.0495), by 12.6% (p = 0.0275) in 18 participants with pruritus at baseline, and by 70% (p = 0.0078) in 8 participants with ItchRO daily average score ≥3 at baseline. CONCLUSIONS: Maralixibat was associated with reduced sBA levels in adults with PSC. In participants with more severe baseline pruritus, pruritus improved significantly from baseline. TEAEs were mostly gastrointestinal related. These results support further investigation of IBAT inhibitors for adults with PSC-associated pruritus. ClinicalTrials.gov: NCT02061540

    Synthesis of oligo-B-alanine-based surfactant via cobalt-catalyzed carbonylation and surface activity study

    No full text
    Synthesis of a novel surfactant with an oligo-β -alanine hydrophilic headgroup was achieved via the carbonylative oligomerization of aziridine followed by coupling with n-octylamine in one pot. The chemical structure of the surfactant was confirmed by NMR and MALDI MS. Preliminary studies on its surface properties, including surface tension measurement and its adsorption on polystyrene latex particles, are reported
    corecore