145 research outputs found

    Full radiative coupling in two-phase models for accreting black holes

    Full text link
    The emission from galactic black holes and Seyfert galaxies is generally understood in term of two-phase models (Haardt and Maraschi 1991, 1993). Such models postulate that a hot plasma coexists with relatively colder material in the inner part of the accretion flow. We present the first simulated broad-band spectra produced by such a system and accounting simultaneously for energy balance and Comptonisation in the hot phase, together with reflection, reprocessing, ionization and thermal balance in the cold phase. This was made possible by coupling three radiative transfer codes: a non-linear Monte-Carlo code (NLMC), a photo-ionization code TITAN and a linear Monte-Carlo code NOAR. The equilibrium comptonisation spectrum appears to be sensitive to the shape of the reprocessed spectrum that, in turn, depends on the ionization parameter, but also on the structure of the irradiated cold material. This is illustrated by a comparison of simulations assuming constant density or a constant pressure in the cold phase. We also compare our results with simplified models where reprocessing is approximated by a blackbody spectrum. Our detailed treatment leads to noticeably different spectral energy distributions (SEDs) characterised by harder X-ray spectra. Even at low ionization parameters the commonly used blackbody approximation is poor, leading to X-ray spectra that are too soft. The effect, however, seems not to be strong enough to reconcile the slab corona model with the hardest observed spectra, unless the reflector has a constant density and the ionization parameter is large.Comment: 11 pages, 5 figures, to appear in A&

    A note on the age of radioactive tracers

    Get PDF
    Abstract The age of a water mass is often estimated experimentally using the radio-age computed from the distribution of a radioactive tracer (radiocarbon, helium -tritium). Deleersnijder et al. [J. Mar. Syst. 28 (2001) 229.] have shown that the radioage underestimates the age of the water and is larger than the age of the radioactive tracer used for its evaluation. This result is generalized here to radio-ages computed from the ratio of two radioactive tracers. The differences between the different ages are also studied analytically and numerically as functions of the decay rate of the radioactive tracers. For small decay rates, the difference between the age of the water mass and the radio-age is shown to be proportional to the decay rate. It depends also on the level of mixing in the system; even radioactive tracers with small decay rates can provide poor estimates of the age of the water mass in a strongly diffusive flow. For small half lives, both the radio-age and the age of radioactive tracers decrease as the inverse of the square root of the decay rate. The same analysis applies to some extent to the estimates of the age of a water mass from stable tracers with known time dependent sources (e.g. chloroflurocarbons)

    Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB2002, doi:10.1029/2005GB002530.Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 ± 0.25 Pg C yr−1, scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.This research was financially supported by the National Aeronautics and Space Administration under grant NAG5- 12528. N. G. also acknowledges support by the National Science Foundation (OCE-0137274). Climate and Environmental Physics, Bern acknowledges support by the European Union through the Integrated Project CarboOcean and the Swiss National Science Foundation

    Examining the impact of multi-layer graphene using cellular and amphibian models

    Get PDF
    In the last few years, graphene has been defined as the revolutionary material showing an incredible expansion in industrial applications. Different graphene forms have been applied in several contexts, spreading from energy technologies and electronics to food and agriculture technologies. Graphene showed promises also in the biomedical field. Hopeful results have been already obtained in diagnostic, drug delivery, tissue regeneration and photothermal cancer ablation. In view of the enormous development of graphene-based technologies, a careful assessment of its impact on health and environment is demanded. It is evident how investigating the graphene toxicity is of fundamental importance in the context of medical purposes. Onthe other hand, the nanomaterial present in the environment, likely to be generated all along the industrial life-cycle, may have harmful effects on living organisms. In the present work, an important contribution on the impact of multi-layer graphene (MLG) on health and environment is given by using a multifaceted approach. For the first purpose, the effect of the material on two mammalian cell models was assessed. Key cytotoxicity parameters were considered such as cell viability and inflammatory response induction. This was combined with an evaluation ofMLGtoxicity towards Xenopus laevis, used as both in vivo and environmental model organism

    Cortical functioning in children with developmental coordination disorder:a motor overflow study

    Get PDF
    This study examined brain activation in children with developmental coordination disorder (DCD) to reveal areas that may contribute to poor movement execution and/or abundant motor overflow. Using functional magnetic resonance imaging, 13 boys with DCD (mean age = 9.6 years ±0.8) and 13 typically developing controls (mean age = 9.3 years ±0.6) were scanned performing two tasks (finger sequencing and hand clenching) with their dominant hand, while a four-finger motion sensor recorded contralateral motor overflow on their non-dominant hand. Despite displaying increased motor overflow on both functional tasks during scanning, there were no obvious activation deficits in the DCD group to explain the abundant motor overflow seen. However, children with DCD were found to display decreased activation in the left superior frontal gyrus on the finger-sequencing task, an area which plays an integral role in executive and spatially oriented processing. Decreased activation was also seen in the left inferior frontal gyrus, an area typically active during the observation and imitation of hand movements. Finally, increased activation in the right postcentral gyrus was seen in children with DCD, which may reflect increased reliance on somatosensory information during the execution of complex fine motor tasks
    corecore