19 research outputs found

    Control Architecture for Cooperative Mobile Robots using Multi-Agent based Coordination Approach

    Get PDF
    National audienceThis paper is about a Multi-Agent based solution to control and coordinate team-working mobile robots moving in unstructured environments. Two main contributions are considered in our approach. The rst contribution of this paper is about the Multi-Agents System to Control and Coordinate teAmworking Robots (MAS2CAR) architecture, a new architecture to control a group of coordinated autonomous robots in unstructured environments. MAS2CAR covers three main layers: (i) the Physical Layer (ii) the Control Layer and (iii) the Coordination Layer. The second contribution of this paper is about the multi-agent system (MAS) organisational models aiming to solve the key cooperation issues in the coordination layer, the software components designed based on Utopia a MAS framework which automatically build software agents, thanks to a multi-agent based organisational model called MoiseInst . We provide simulation results that exhibit robotics cooperative behavior related to our scenario, such as multi-robots navigation in presence of obstacles (including trajectory planning, and reactive aspects) via a hybrid control

    Control and management architecture for distributed autonomous systems : application to multi-vehicles based platform

    No full text
    La complexité associée à la coordination d’un groupe de robots mobiles est traitée dans cette thèse en investiguant plus avant les potentialités des architectures de commande multi-contrôleurs dont le but est de briser la complexité des tâches à exécuter. En effet, les robots mobiles peuvent évoluer dans des environnements très complexes et nécessitent de surcroît une coopération précise et sécurisée pouvant rapidement devenir inextricable. Ainsi, pour maîtriser cette complexité, le contrôleur dédié à la réalisation d’une tâche est décomposé en un ensemble de comportements/contrôleurs élémentaires (évitement d’obstacles et de collision entre les robots, attraction vers une cible, planification, etc.) qui lient les informations capteurs (provenant des capteurs locaux du robot, etc.) aux actionneurs des différentes entités robotiques. La tâche considérée dans cette thèse correspond à la navigation d’un groupe de robots mobiles dans des environnements peu ou pas connus en présence d’obstacles (statiques et dynamiques). La spécificité de l’approche théorique consiste à allier les avantages des architectures multi-contrôleurs à ceux des systèmes multi-agents et spécialement les modèles organisationnels afin d’apporter un haut niveau de coordination entre les agents/robots mobiles. Le groupe de robots mobiles est alors coordonné suivant les différentes normes et spécifications du modèle organisationnel. Ainsi, l’activation d’un comportement élémentaire en faveur d’un autre se fait en respectant les contraintes structurelles des robots en vue d’assurer le maximum de précision et de sécurité des mouvements coordonnés entre les différentes entités mobiles. La coopération se fait à travers un agent superviseur (centralisé) de façon à atteindre plus rapidement la destination désirée, les événements inattendus sont gérés quant à eux individuellement par les agents/robots mobiles de façon distribuée. L’élaboration du simulateur ROBOTOPIA nous a permis d’illustrer chacune des contributions de la thèse par un nombre important de simulations.The difficulty of coordinating a group of mobile robots is adressed in this thesis by investigating control architectures which aim to break task complexity. In fact, multi-robot navigation may become rapidly inextricable, specifically if it is made in hazardous and dynamical environment requiring precise and secure cooperation. The considered task is the navigation of a group of mobile robots in unknown environments in presence of (static and dynamic) obstacles. To overcome its complexity, it is proposed to divide the overall task into a set of basic behaviors/controllers (obstacle avoidance, attraction to a dynamical target, planning, etc.). Applied control is chosen among these controllers according to sensors information (camera, local sensors, etc.). The specificity of the theoretical approach is to combine the benefits of multi-controller control architectures to those of multi-agent organizational models to provide a high level of coordination between mobile agents-robots systems. The group of mobile robots is then coordinated according to different norms and specifications of the organizational model. Thus, activating a basic behavior in favor of another is done in accordance with the structural constraints of the robots in order to ensure maximum safety and precision of the coordinated movements between robots. Cooperation takes place through a supervisor agent (centralized) to reach the desired destination faster ; unexpected events are individually managed by the mobile agents/robots in a distributed way. To guarantee performance criteria of the control architecture, hybrid systems tolerating the control of continuous systems in presence of discrete events are explored. In fact, this control allows coordinating (by discrete part) the different behaviors (continuous part) of the architecture. The development of ROBOTOPIA simulator allowed us to illustrate each contribution by many results of simulations

    Architecture de COntrôle/COmmande dédiée aux systèmes Distribués Autonomes (ACO²DA) : application à une plate-forme multi-véhicules

    No full text
    The difficulty of coordinating a group of mobile robots is adressed in this thesis by investigating control architectures which aim to break task complexity. In fact, multi-robot navigation may become rapidly inextricable, specifically if it is made in hazardous and dynamical environment requiring precise and secure cooperation. The considered task is the navigation of a group of mobile robots in unknown environments in presence of (static and dynamic) obstacles. To overcome its complexity, it is proposed to divide the overall task into a set of basic behaviors/controllers (obstacle avoidance, attraction to a dynamical target, planning, etc.). Applied control is chosen among these controllers according to sensors information (camera, local sensors, etc.). The specificity of the theoretical approach is to combine the benefits of multi-controller control architectures to those of multi-agent organizational models to provide a high level of coordination between mobile agents-robots systems. The group of mobile robots is then coordinated according to different norms and specifications of the organizational model. Thus, activating a basic behavior in favor of another is done in accordance with the structural constraints of the robots in order to ensure maximum safety and precision of the coordinated movements between robots. Cooperation takes place through a supervisor agent (centralized) to reach the desired destination faster ; unexpected events are individually managed by the mobile agents/robots in a distributed way. To guarantee performance criteria of the control architecture, hybrid systems tolerating the control of continuous systems in presence of discrete events are explored. In fact, this control allows coordinating (by discrete part) the different behaviors (continuous part) of the architecture. The development of ROBOTOPIA simulator allowed us to illustrate each contribution by many results of simulations.La complexité associée à la coordination d’un groupe de robots mobiles est traitée dans cette thèse en investiguant plus avant les potentialités des architectures de commande multi-contrôleurs dont le but est de briser la complexité des tâches à exécuter. En effet, les robots mobiles peuvent évoluer dans des environnements très complexes et nécessitent de surcroît une coopération précise et sécurisée pouvant rapidement devenir inextricable. Ainsi, pour maîtriser cette complexité, le contrôleur dédié à la réalisation d’une tâche est décomposé en un ensemble de comportements/contrôleurs élémentaires (évitement d’obstacles et de collision entre les robots, attraction vers une cible, planification, etc.) qui lient les informations capteurs (provenant des capteurs locaux du robot, etc.) aux actionneurs des différentes entités robotiques. La tâche considérée dans cette thèse correspond à la navigation d’un groupe de robots mobiles dans des environnements peu ou pas connus en présence d’obstacles (statiques et dynamiques). La spécificité de l’approche théorique consiste à allier les avantages des architectures multi-contrôleurs à ceux des systèmes multi-agents et spécialement les modèles organisationnels afin d’apporter un haut niveau de coordination entre les agents/robots mobiles. Le groupe de robots mobiles est alors coordonné suivant les différentes normes et spécifications du modèle organisationnel. Ainsi, l’activation d’un comportement élémentaire en faveur d’un autre se fait en respectant les contraintes structurelles des robots en vue d’assurer le maximum de précision et de sécurité des mouvements coordonnés entre les différentes entités mobiles. La coopération se fait à travers un agent superviseur (centralisé) de façon à atteindre plus rapidement la destination désirée, les événements inattendus sont gérés quant à eux individuellement par les agents/robots mobiles de façon distribuée. L’élaboration du simulateur ROBOTOPIA nous a permis d’illustrer chacune des contributions de la thèse par un nombre important de simulations

    Mobile Robot Navigation and Obstacles Avoidance based on Planning and Re-Planning Algorithm

    No full text
    International audienceThis paper deals with a multi-mode control architecture for robot navigation and obstacle avoidance. It presents an adaptive and flexible algorithm of control which guarantees the stability and the smoothness of mobile robot navigation dealing with unexpected events. Moreover, the proposed Planning and Re-Planning (PRP) algorithm combine the two schools of thought, the one based on the path planning to avoid obstacles and reach the target, described as cognitive, and the second using the reactive algorithms. In fact the mix of these two approaches allows us to develop a very reliable algorithm. It provides us a scalable mobile robot navigation and obstacle avoidance, with less processing. It is accomplished by making an initial path planning, then to resolve the problem of unexpected static or dynamic obstacles while tracking the trajectory. A system of hierarchical action selection allows us to switch to a reactive avoidance, then to re-plan a new and safe trajectory to reach the target. A large number of simulations in different environments are performed to show the efficiency of the proposed PRP algorithm

    Intelligent intrusion detection through deep autoencoder and stacked long short-term memory

    Get PDF
    In the realm of network intrusion detection, the escalating complexity and diversity of cyber threats necessitate innovative approaches to enhance detection accuracy. This study introduces an integrated solution leveraging deep learning techniques for improved intrusion detection. The proposed framework consists on a deep autoencoder for feature extraction, and a stacked long short-term memory (LSTM) network ensemble for classification. The deep autoencoder compresses raw network data, extracting salient features and mitigating noise. Subsequently, the stacked LSTM ensemble captures intricate temporal dependencies, correcting anomaly detection precision. Experiments conducted on the UNSW-NB15 dataset, and a benchmark in intrusion detection validate the effectiveness of the approach. The solution achieves an accuracy of 90.59%, with precision, recall, and F1-Score metrics reaching 90.65, 90.59, and 90.57, respectively. Notably, the framework outperforms standalone models and demonstrates the advantage of synergizing deep autoencoder-driven feature extraction with the stacked LSTM ensemble. Furthermore, a binary classification experiment attains an accuracy of about 90.59%, surpassing the multiclass classification and affirming the model's potential for binary threat identification. Comparative analyses highlight the pivotal role of feature extraction, while experimentation illustrates the enhancement achieved by incorporating the synergistic deep autoencoder-Stacked LSTM approach

    Architecture Controlling Multi-Robot System using Multi-Agent based CoordinationApproach

    No full text
    International audience—This paper is about a Multi-Agent based solution to control and coordinate team-working mobile robots moving in unstructured environments. Two main contributions are considered in our approach. The first contribution of this paper is about the Multi-Agents System to Control and Coordinate teAmworking Robots (MAS2CAR) architecture, a new architecture to control a group of coordinated autonomous robots in unstructured environments. MAS2CAR covers three main layers: (i) the Physical Layer (ii) the Control Layer and (iii) the Coordination Layer. The second contribution of this paper is about the multi-agent system (MAS) or-ganisational models aiming to solve the key cooperation issues in the coordination layer, the software components designed based on U TOPIA a MAS framework which automatically build software agents, thanks to a multi-agent based organisational model called MOISE Inst. We provide simulation results that exhibit robotics cooperative behavior related to our scenario, such as multi-robots navigation in presence of obstacles (including trajectory planning, and reactive aspects) via a hybrid control

    Multi-agents based system to coordinate mobile teamworking robots

    No full text
    International audienceThis paper aims at presenting the Multi-Agents System to Control and Coordinate teAmworking Robots (MAS2CAR), a new architecture to control a group of coordinated autonomous robots in un-structured environments. MAS2CAR covers two main layers: (i) the Control Layer and we focus on (ii) the Coordination Layer. The control module is responsible for a part of the decision making process taking into account robot's structural constraints. Despite this autonomy possibility, the Coordination Layer manages the robots in order to bring cooperative behavior and to allow teamwork. In this paper we present a scenario validating our approach based upon the multi-agent systems (MAS). Thanks to its reliability we have chosen the Moise Inst organizational model and we will present how it can be used for this use-case. Moreover, regarding to the implementation part, we have retained Utopia, a framework which automatically build a MAS thanks to a Moise Inst specification. We will present key problematics of the Cooperation Layer implementation solved thanks to Utopia and exhibit robotic cooperative behavior related to our scenario through simulation results
    corecore