566 research outputs found

    Spin Screening and Antiscreening in a Ferromagnet/Superconductor Heterojunction

    Get PDF
    We present a theoretical study of spin screening effects in a ferromagnet/superconductor (F/S) heterojunction. It is shown that the magnetic moment of the ferromagnet is screened or antiscreened, depending on the polarization of the electrons at the Fermi level. If the polarization is determined by the electrons of the majority (minority) spin band then the magnetic moment of the ferromagnet is screened (antiscreened) by the electrons in the superconductor. We propose experiments that may confirm our theory: for ferromagnetic alloys with certain concentration of Fe or Ni ions there will be screening or antiscreening respectively. Different configurations for the density of states are also discussed.Comment: 5 pages; 4 figures. to be published in Phys. Rev,

    Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb

    Full text link
    We calculate the adiabatic contributions to the free energy due to the electron--phonon interaction at intermediate temperatures, 0⩽kBT<ϵF0 \leqslant k_{B} T < \epsilon_{F} for the elemental metals Na, K, Al, and Pb. Using our previously published results for the nonadiabatic contributions we show that the adiabatic contribution, which is proportional to T2T^{2} at low temperatures and goes as T3T^{3} at high temperatures, dominates the nonadiabatic contribution for temperatures above a cross--over temperature, TcT_{c}, which is between 0.5 and 0.8 TmT_{m}, where TmT_{m} is the melting temperature of the metal. The nonadiabatic contribution falls as T−1T^{-1} for temperatures roughly above the average phonon frequency.Comment: Updated versio

    Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel

    Full text link
    We measure the band structure of nickel along various high-symmetry lines of the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters are obtained from non-magnetic density-functional theory resolves most of the long-standing discrepancies between experiment and theory on nickel. Thereby we support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl

    Instability of the rhodium magnetic moment as origin of the metamagnetic phase transition in alpha-FeRh

    Full text link
    Based on ab initio total energy calculations we show that two magnetic states of rhodium atoms together with competing ferromagnetic and antiferromagnetic exchange interactions are responsible for a temperature induced metamagnetic phase transition, which experimentally is observed for stoichiometric alpha-FeRh. A first-principle spin-based model allows to reproduce this first-order metamagnetic transition by means of Monte Carlo simulations. Further inclusion of spacial variation of exchange parameters leads to a realistic description of the experimental magneto-volume effects in alpha-FeRh.Comment: 10 pages, 13 figures, accepted for publication in Phys. Rev.

    The occurrence of two morphologically similar Chaetozone (Annelida: Polychaeta: Cirratulidae) species from the Italian seas: Chaetozone corona Berkeley & Berkeley, 1941 and C. carpenteri McIntosh, 1911

    Get PDF
    The present study reports the spread of the cirratulids Chaetozone corona Berkeley & Berkeley, 1941 and Chaetozone carpenteri McIntosh, 1911 in the Western Central Adriatic Sea, off the coasts of Pescara (Italy). The two species were collected between 2014 and 2016 from soft bottom stations (at depths from 16.5 to 130 m) where the environment was more or less disturbed due to fishing activities. One specimen of C. corona was found also off the coast of Calafuria (Livorno, Italy), representing the first record of this species in the Tyrrhenian Sea. Chaetozone carpenteri could be a native species present in the Mediterranean for a long time but rarely recorded because of taxonomic confusion. Chaetozone corona was already known from the eastern Mediterranean Sea (except from the Adriatic Sea), where it is considered an established alien species. Our results extend the geographic range of these two cirratulid species, providing some information on their ecology and habitat preference. We also suggest a likely vector of spread of C. corona from the easternmost part of the Mediterranean towards the study area. The finding of reproducing specimens of C. corona and C. carpenteri supports the hypothesis that these two species have found a suitable habitat in the Western Central Adriatic Sea, and there will become well established. Although nothing suggests that C. corona would be invasive, it may, however, compete with native species. These findings also seem particularly relevant in order to improve the knowledge of Mediterranean biodiversity

    Structure and Magnetism of Neutral and Anionic Palladium Clusters

    Full text link
    The properties of neutral and anionic Pd_N clusters were investigated with spin-density-functional calculations. The ground state structures are three-dimensional for N>3 and they are magnetic with a spin-triplet for 2<=N<=7 and a spin nonet for N=13 neutral clusters. Structural- and spin-isomers were determined and an anomalous increase of the magnetic moment with temperature is predicted for a Pd_7 ensemble. Vertical electron detachment and ionization energies were calculated and the former agree well with measured values for anionic Pd_N clusters.Comment: 5 pages, 3 figures, fig. 2 in color, accepted to Phys. Rev. Lett. (2001

    Scattering polarization of hydrogen lines from electric-induced atomic alignment

    Full text link
    We consider a gas of hydrogen atoms illuminated by a broadband, unpolarized radiation with zero anisotropy. In the absence of external fields, the atomic J-levels are thus isotropically populated. While this condition persists in the presence of a magnetic field, we show instead that electric fields can induce the alignment of those levels. We also show that this electric alignment cannot occur in a two-term model of hydrogen (e.g., if only the Ly-alpha transition is excited), or if the level populations are distributed according to Boltzmann's law.Comment: 10 pages, 4 figures. Accepted by J.Phys.B: At.Mol.Opt.Phy

    Magnetic tight-binding and the iron-chromium enthalpy anomaly

    Full text link
    We describe a self consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non spin polarised reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to the Stoner--Slater rigid band model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe which we compare with results using the local spin density approximation. The rigid band model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.Comment: Submitted to Phys Rev

    Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt

    Get PDF
    We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by means of spin and angle-resolved photoemission spectroscopy. The experimental spectra are compared in detail to state-of-the-art many-body calculations within the dynamical mean field theory and the three-body scattering approximation, including a full calculation of the one-step photoemission process. From this comparison we conclude that although strong local many-body Coulomb interactions are of major importance for the qualitative description of correlation effects in Co, more sophisticated many-body calculations are needed in order to improve the quantitative agreement between theory and experiment, in particular concerning the linewidths. The quality of the overall agreement obtained for Co indicates that the effect of non-local correlations becomes weaker with increasing atomic number

    Why is the bandwidth of sodium observed to be narrower in photoemission experiments?

    Full text link
    The experimentally predicted narrowing in the bandwidth of sodium is interpreted in terms of the non-local self-energy effect on quasi-particle energies of the electron liquid. The calculated self-energy correction is a monotonically increasing function of the wavenumber variable. The usual analysis of photo-emission experiments assumes the final state energies on the nearly-free-electron-like model and hence it incorrectly ascribes the non-local self-energy correction to the final state energies to the occupied state energies, thus leading to a seeming narrowing in the bandwidth.Comment: 9 page
    • …
    corecore