223 research outputs found
PHYLOGENETIC ANALYSIS OF FUSARIUM OXYSPORUMF STRAINS ISOLATED FROM STRAWBERRY CROPSFRAGARIA ANANASSADUCH IN THE PROVINCE OF PICHINCHA (ECUADOR)
Objective: Strawberry cultivation has acquired great importance for consumption, promoting the increase of its production in Ecuador. However, the process of importing plant material from producing countries in order to improve domestic production has contributed to the dissemination of the fungus Fusarium oxysporum f. sp. fragariae.
To identify the presence of the pathogen, by applying molecular techniques to the Fusarium strains isolated from strawberry crops.
Methods: Nine two diseased strawberry plants and 92 asymptomatic plants were analyzed. From these samples, 13 fungi with the characteristics of the Fusarium genus were identified. The isolates were analyzed at the molecular level, by PCR (Polymerase chain reaction) amplifying the ITS regions of the rDNA and the EF-1α region.
Results: The PCR product was sequenced to elucidate the phylogenetic relationships between the isolates, identifying 12 strains as F. oxysporum f. sp. fragariae. These results confirmed the presence of the fungus in the strawberry crops analyzed, representing a contribution to the search for control alternatives to avoid the spread of the pathogen.
Conclusion: The PCR product was sequenced to elucidate the phylogenetic relationships between the isolates, identifying 12 strains as F. oxysporum f. sp. fragariae
Effects of silica addition on the chemical, mechanical and biological properties of a new α-Tricalcium Phosphate/Tricalcium Silicate Cement
The addition of tricalcium silicate (C3S) to apatite cements results in an increase of bioactivity and improvement in the mechanical properties. However, adding large amounts raises the local pH at early stages, which retards the precipitation of hydroxyapatite and produces a loss of mechanical strength. The introduction of Pozzolanic materials in cement pastes could be an effective way to reduces basicity and enhance their mechanical resistance; thus, the effect of adding silica on the chemical, mechanical and biological properties of α-tricalcium phosphate/C3S cement was studied. Adding silica produces a reduction in the early pH and a decrease in setting times; nevertheless, the presence of more calcium silicate hydrate (C-S-H) delays the growth of hydroxyapatite crystals and consequently, reduces early compressive strength. The new formulations show a good bioactivity, but higher cytotoxicity than traditional cements and additions higher than 2.5% of SiO2 cause a lack of mechanical strength and an elevated degradability
Tensile energy dissipation and mechanical properties of the knee meniscus: relationship with fiber orientation, tissue layer, and water content
Introduction: The knee meniscus distributes and dampens mechanical loads. It is composed of water (∼70%) and a porous fibrous matrix (∼30%) with a central core that is reinforced by circumferential collagen fibers enclosed by mesh-like superficial tibial and femoral layers. Daily loading activities produce mechanical tensile loads which are transferred through and dissipated by the meniscus. Therefore, the objective of this study was to measure how tensile mechanical properties and extent of energy dissipation vary by tension direction, meniscal layer, and water content.Methods: The central regions of porcine meniscal pairs (n = 8) were cut into tensile samples (4.7 mm length, 2.1 mm width, and 0.356 mm thickness) from core, femoral and tibial components. Core samples were prepared parallel (circumferential) and perpendicular (radial) to the fibers. Tensile testing consisted of frequency sweeps (0.01–1Hz) followed by quasi-static loading to failure. Dynamic testing yielded energy dissipation (ED), complex modulus (E*), and phase shift (δ) while quasi-static tests yielded Young’s Modulus (E), ultimate tensile strength (UTS), and strain at UTS (εUTS). To investigate how ED is influenced by the specific mechanical parameters, linear regressions were performed. Correlations between sample water content (φw) and mechanical properties were investigated. A total of 64 samples were evaluated.Results: Dynamic tests showed that increasing loading frequency significantly reduced ED (p < 0.05). Circumferential samples had higher ED, E*, E, and UTS than radial ones (p < 0.001). Stiffness was highly correlated with ED (R2 > 0.75, p < 0.01). No differences were found between superficial and circumferential core layers. ED, E*, E, and UTS trended negatively with φw (p < 0.05).Discussion: Energy dissipation, stiffness, and strength are highly dependent on loading direction. A significant amount of energy dissipation may be associated with time-dependent reorganization of matrix fibers. This is the first study to analyze the tensile dynamic properties and energy dissipation of the meniscus surface layers. Results provide new insights on the mechanics and function of meniscal tissue
A personalized intervention to prevent depression in primary care: cost-effectiveness study nested into a clustered randomized trial
Background: Depression is viewed as a major and increasing public health issue, as it causes high distress in the people experiencing it and considerable financial costs to society. Efforts are being made to reduce this burden by preventing depression. A critical component of this strategy is the ability to assess the individual level and profile of risk for the development of major depression. This paper presents the cost-effectiveness of a personalized intervention based on the risk of developing depression carried out in primary care, compared with usual care. Methods: Cost-effectiveness analyses are nested within a multicentre, clustered, randomized controlled trial of a personalized intervention to prevent depression. The study was carried out in 70 primary care centres from seven cities in Spain. Two general practitioners (GPs) were randomly sampled from those prepared to participate in each centre (i.e. 140 GPs), and 3326 participants consented and were eligible to participate. The intervention included the GP communicating to the patient his/her individual risk for depression and personal risk factors and the construction by both GPs and patients of a psychosocial programme tailored to prevent depression. In addition, GPs carried out measures to activate and empower the patients, who also received a leaflet about preventing depression. GPs were trained in a 10- to 15-h workshop. Costs were measured from a societal and National Health care perspective. Qualityadjustedlife years were assessed using the EuroQOL five dimensions questionnaire. The time horizon was 18 months. Results: With a willingness-to-pay threshold of (sic)10, 000 ((sic)8568) the probability of cost-effectiveness oscillated from 83% (societal perspective) to 89% (health perspective). If the threshold was increased to (sic)30, 000 ((sic)25, 704), the probability of being considered cost-effective was 94% (societal perspective) and 96%, respectively (health perspective). The sensitivity analysis confirmed these results. Conclusions: Compared with usual care, an intervention based on personal predictors of risk of depression implemented by GPs is a cost-effective strategy to prevent depression. This type of personalized intervention in primary care should be further developed and evaluated
A Search for Photons with Energies Above 2 × 10 eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory
Ultra-high-energy photons with energies exceeding 10 eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 10 eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 × 10 eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 10 and 10 eV
A Search for Photons with Energies above 2 × 1017eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory
Ultra-high-energy photons with energies exceeding 1017 eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 1015 eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 × 1017 eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 1017 and 1018 eV
Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory
The Pierre Auger Observatory, being the largest air-shower experiment in the
world, offers an unprecedented exposure to neutral particles at the highest
energies. Since the start of data taking more than 18 years ago, various
searches for ultra-high-energy (UHE, ) photons have
been performed: either for a diffuse flux of UHE photons, for point sources of
UHE photons or for UHE photons associated with transient events like
gravitational wave events. In the present paper, we summarize these searches
and review the current results obtained using the wealth of data collected by
the Pierre Auger Observatory.Comment: Review article accepted for publication in Universe (special issue on
ultra-high energy photons
The Pierre Auger Observatory Open Data
The Pierre Auger Collaboration has embraced the concept of open access to
their research data since its foundation, with the aim of giving access to the
widest possible community. A gradual process of release began as early as 2007
when 1% of the cosmic-ray data was made public, along with 100% of the
space-weather information. In February 2021, a portal was released containing
10% of cosmic-ray data collected from 2004 to 2018, during Phase I of the
Observatory. The Portal included detailed documentation about the detection and
reconstruction procedures, analysis codes that can be easily used and modified
and, additionally, visualization tools. Since then the Portal has been updated
and extended. In 2023, a catalog of the 100 highest-energy cosmic-ray events
examined in depth has been included. A specific section dedicated to
educational use has been developed with the expectation that these data will be
explored by a wide and diverse community including professional and
citizen-scientists, and used for educational and outreach initiatives. This
paper describes the context, the spirit and the technical implementation of the
release of data by the largest cosmic-ray detector ever built, and anticipates
its future developments.Comment: 19 pages, 8 figure
- …