176 research outputs found
Recommended from our members
Toward improved hydrologic prediction with reduced uncertainty using sequential multi-model combination
The contemporary usage of hydrologic models has been to rely on a single model to perform the simulation and predictions. Despite the tremendous progress, efforts and investment put into developing more hydrologic models, there is no convincing claim that any particular model in existence is superior to other models for various applications and under all circumstances. This results to reducing the size of the plausible model space and often leads to predictions that may well-represent some phenomena or events at the expenses of others. Assessment of predictive uncertainty based on a single model is subject to statistical bias and most likely underestimation of uncertainty. This endorses the implementation of multi-model methods for more accurate estimation of uncertainty in hydrologic prediction. In this study, we present two methods for the combination of multiple model predictors using Bayesian Model Averaging (BMA) and Sequential Bayesian Model Combination (SBMC). Both methods are statistical schemes to infer a combined probabilistic prediction that possess more reliability and skill than the original model members produced by several competing models. This paper discusses the features of both methods and explains how the limitation of BMA can be overcome by SBMC. Three hydrologic models are considered and it is shown that multi-model combination can result in higher prediction accuracy than individual models. © 2008 ASCE
Recommended from our members
Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
Streamflow forecasting has always been a challenging task for water resources engineers and managers and a major component of water resources system control. In this study, we explore the applicability of a Self Organizing Radial Basis (SORB) function to one-step ahead forecasting of daily streamflow. SORB uses a Gaussian Radial Basis Function architecture in conjunction with the Self-Organizing Feature Map (SOFM) used in data classification. SORB outperforms the two other ANN algorithms, the well known Multi-layer Feedforward Network (MFN) and Self-Organizing Linear Output map (SOLO) neural network for simulation of daily streamflow in the semi-arid Salt River basin. The applicability of the linear regression model was also investigated and concluded that the regression model is not reliable for this study. To generalize the model and derive a robust parameter set, cross-validation is applied and its outcome is compared with the split sample test. Cross-validation justifies the validity of the nonlinear relationship set up between input and output data. © 2004 Elsevier B.V. All rights reserved
Recommended from our members
Dual state-parameter estimation of hydrological models using ensemble Kalman filter
Hydrologic models are twofold: models for understanding physical processes and models for prediction. This study addresses the latter, which modelers use to predict, for example, streamflow at some future time given knowledge of the current state of the system and model parameters. In this respect, good estimates of the parameters and state variables are needed to enable the model to generate accurate forecasts. In this paper, a dual state-parameter estimation approach is presented based on the Ensemble Kalman Filter (EnKF) for sequential estimation of both parameters and state variables of a hydrologic model. A systematic approach for identification of the perturbation factors used for ensemble generation and for selection of ensemble size is discussed. The dual EnKF methodology introduces a number of novel features: (1) both model states and parameters can be estimated simultaneously; (2) the algorithm is recursive and therefore does not require storage of all past information, as is the case in the batch calibration procedures; and (3) the various sources of uncertainties can be properly addressed, including input, output, and parameter uncertainties. The applicability and usefulness of the dual EnKF approach for ensemble streamflow forecasting is demonstrated using a conceptual rainfall-runoff model. © 2004 Elsevier Ltd. All rights reserved
Recommended from our members
Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response
The aim of this paper is to foster the development of an end-to-end uncertainty analysis framework that can quantify satellite-based precipitation estimation error characteristics and to assess the influence of the error propagation into hydrological simulation. First, the error associated with the satellite-based precipitation estimates is assumed as a nonlinear function of rainfall space-time integration scale, rain intensity, and sampling frequency. Parameters of this function are determined by using high-resolution satellite-based precipitation estimates and gauge-corrected radar rainfall data over the southwestern United States. Parameter sensitivity analysis at 16 selected 5° × 5° latitude-longitude grids shows about 12-16% of variance of each parameter with respect to its mean value. Afterward, the influence of precipitation estimation error on the uncertainty of hydrological response is further examined with Monte Carlo simulation. By this approach, 100 ensemble members of precipitation data are generated, as forcing input to a conceptual rainfall-runoff hydrologic model, and the resulting uncertainty in the streamflow prediction is quantified. Case studies are demonstrated over the Leaf River basin in Mississippi. Compared with conventional procedure, i.e., precipitation estimation error as fixed ratio of rain rates, the proposed framework provides more realistic quantification of precipitation estimation error and offers improved uncertainty assessment of the error propagation into hydrologic simulation. Further study shows that the radar rainfall-generated streamflow sequences are consistently contained by the uncertainty bound of satellite rainfall generated streamflow at the 95% confidence interval. Copyright 2006 by the American Geophysical Union
Recommended from our members
Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting
In the past few years sequential data assimilation (SDA) methods have emerged as the best possible method at hand to properly treat all sources of error in hydrological modeling. However, very few studies have actually implemented SDA methods using realistic input error models for precipitation. In this study we use particle filtering as a SDA method to propagate input errors through a conceptual hydrologic model and quantify the state, parameter and streamflow uncertainties. Recent progress in satellite-based precipitation observation techniques offers an attractive option for considering spatiotemporal variation of precipitation. Therefore, we use the PERSIANN-CCS precipitation product to propagate input errors through our hydrologic model. Some uncertainty scenarios are set up to incorporate and investigate the impact of the individual uncertainty sources from precipitation, parameters and also combined error sources on the hydrologic response. Also probabilistic measure are used to quantify the quality of ensemble prediction. Copyright 2006 by the American Geophysical Union
Optimization of micropropagation and establishment of cell suspension culture in Melissa officinalis L.
Melissa officinalis L., due to its useful application in medicine, is being paid more attention. In order to establish a stable regeneration system with 4 landraces collected from different climate in Iran, major parameters such as regeneration rate, rooting percentage, shooting induction, proliferation rate, fresh and dry weight as a biomass of cells were investigated. Statistical analysis of results showed that BAP in combination with NAA had the highest regeneration in shoot tips explants. NAA in combination with IAA and kinetin had the best response to callus induction. Also 1 mgl/l NAA had a higher response to rooting than other auxins used. 2,4-D at 1.0 mg/l and BAP at 0.5 mg/l showed the highest production of fresh and dry weight, 5.48 and 0.407 g, respectively, that is approximately 20 times the initial weight of callus. 2,4-D (1 mg/l) and BAP (0.5 mg/l) had the highest cells number
Determining the best drought tolerance indices using Artificial Neural Network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding
In the present study, efficiency of the artificial neural network (ANN) method to identify the best drought tolerance indices was investigated. For this purpose, 25 durum genotypes were evaluated under rainfed and supplemental irrigation environments during two consecutive cropping seasons (2011–2013). The results of combined analysis of variance (ANOVA) revealed that year, environment, genotype and their interaction effects were significant for grain yield. Mean grain yield of the genotypes ranged from 184.93 g plot–1 under rainfed environment to 659.32 g plot–1 under irrigated environment. Based on the ANN results, yield stability index (YSI), harmonic mean (HM) and stress susceptible index (SSI) were identified as the best indices to predict drought-tolerant genotypes. However, mean productivity (MP) followed by geometric mean productivity (GMP) and HM were found to be accurate indices for screening drought tolerant genotypes. In general, our results indicated that genotypes G9, G12, G21, G23 and G24 were identified as more desirable genotypes for cultivation in drought-prone environments. Importantly, these results could provide an evidence that ANN method can play an important role in the selection of drought tolerant genotypes and also could be useful in other biological contexts
Probabilistic flood inundation mapping through copula Bayesian multi-modeling of precipitation products
Accurate prediction and assessment of extreme flood events are crucial for effective disaster preparedness, response, and mitigation strategies. One crucial factor influencing the intensity and magnitude of extreme flood events is precipitation. Precipitation patterns, particularly during intense weather phenomena such as hurricanes, can play a significant role in triggering widespread flooding over densely populated areas. Traditional flood prediction models typically rely on single-source precipitation data, which may not adequately capture the inherent variability and uncertainty associated with extreme events due to certain limitations in the precipitation generation framework, availability, or both spatial and temporal resolutions. Moreover, in coastal regions, the complex interaction between local precipitation, river flows, and coastal processes (i.e., storm tide) can result in compound flooding and amplify the overall impact and complexity of flooding patterns. This study presents an implementation of the global copula-embedded Bayesian model averaging (BMA) (Global Cop-BMA) framework for improving the accuracy and reliability of extreme flood modeling. The proposed framework integrates a collection of precipitation products with different spatiotemporal resolutions to account for uncertainty in forcing data for hydrodynamic modeling and generating probabilistic flood inundation maps. The methodology is evaluated with respect to Hurricane Harvey, which was a catastrophic weather event characterized by intense precipitation and compound flooding processes over the city of Houston in the state of Texas in 2017. The results show a significant improvement in predictive accuracy compared to those based on a single precipitation product (e.g., the Nash–Sutcliffe efficiency (NSE) performance of a single quantitative precipitation estimation (QPE) is in the range of 0.695 to 0.846, while the Cop-BMA yields an NSE of 0.858), demonstrating the merits of the Global Cop-BMA approach. Furthermore, this research extends its impact by generating probabilistic flood extension maps that account not only for the primary influence of precipitation as a flood driver but also for the intricate nature of compound flooding processes in coastal environments.</p
- …