7,755 research outputs found

    A new dynamic property of human consciousness

    Get PDF
    As pointed out by William James, "the consciousness is a dynamic process, not a thing" , during which short term integration is succeeded by another differentiated neural state through the continual interplay between the environment, the body, and the brain itself. Thus, the dynamic structure underlying successive states of the brain is important for understanding human consciousness as a process. In order to investigate the dynamic property of human consciousness, we developed a new method to reconstruct a state space from electroencephalogram(EEG), in which a trajectory, reflecting states of consciousness, is constructed based on the global information integration of the brain. EEGs were obtained from 14 subjects received an intravenous bolus of propopol. Here we show that the degree of human consciousness is directly associated with the information integration capacity of gamma wave, which is significantly higher in the conscious state than in the unconscious state. And we found a new time evolutional property of human consciousness. The conscious state showed a lower dimensional dynamic process which changed to a random-like process after loss of consciousness. This characteristic dynamic property, appeared only in the gamma band, might be used as an indicator to distinguish the conscious and unconscious states and also considered as an important fact for the human consciousness model

    Generation of High-Intensity Laser Pulses and their Applications

    Get PDF
    The progress in the laser technology makes it possible to produce a laser pulse having a peak power of over PW. Focusing such high-power laser pulses enables ones to have unprecedentedly strong laser intensity. The laser intensity over 1019 W/cm2, which is called the relativistic laser intensity, can accelerate electrons almost to the speed of light. The acceleration of charged particles using such a high-power laser pulse has been successfully demonstrated in many experiments. According to the recent calculation using the vector diffraction theory, it is possible, by employing a tight focusing geometry, to produce a femtosecond (fs) laser focal spot to have an intensity of over 1024 W/cm2 in the focal plane. Over this laser intensity, protons can be directly accelerated almost to the speed of light. Such ultrashort and ultrastrong laser intensities will bring ones many opportunities to experimentally study ultrafast physical phenomena we have never met before. This chapter describes how to generate a high-power laser pulse. And, then the focusing characteristics of a femtosecond high-power laser pulse are discussed in the scalar and the vector diffraction limits. Finally, the applications of ultrashort high-power laser are briefly introduced

    Laser Beam Diagnostics in a Spatial Domain

    Get PDF

    Propofol Induction Reduces the Capacity for Neural Information Integration: Implications for the Mechanism of Consciousness and General Anesthesia

    Get PDF
    The cognitive unbinding paradigm suggests that the synthesis of cognitive information is attenuated by general anesthesia. Here, we investigated the functional organization of brain activities in the conscious and anesthetized states, based on characteristic functional segregation and integration of electroencephalography (EEG). EEG recordings were obtained from 14 subjects undergoing induction of general anesthesia with propofol. We quantified changes in mean information integration capacity in each band of the EEG. After induction with propofol, mean information integration capacity was reduced most prominently in the gamma band of the EEG (p=0.0001). Furthermore, we demonstrate that loss of consciousness is reflected by the breakdown of the spatiotemporal organization of gamma waves. Induction of general anesthesia with propofol reduces the capacity for information integration in the brain. These data directly support the information integration theory of consciousness and the cognitive unbinding paradigm of general anesthesia

    The full repertoire of Drosophila gustatory receptors for detecting an aversive compound.

    Get PDF
    The ability to detect toxic compounds in foods is essential for animal survival. However, the minimal subunit composition of gustatory receptors required for sensing aversive chemicals in Drosophila is unknown. Here we report that three gustatory receptors, GR8a, GR66a and GR98b function together in the detection of L-canavanine, a plant-derived insecticide. Ectopic co-expression of Gr8a and Gr98b in Gr66a-expressing, bitter-sensing gustatory receptor neurons (GRNs) confers responsiveness to L-canavanine. Furthermore, misexpression of all three Grs enables salt- or sweet-sensing GRNs to respond to L-canavanine. Introduction of these Grs in sweet-sensing GRNs switches L-canavanine from an aversive to an attractive compound. Co-expression of GR8a, GR66a and GR98b in Drosophila S2 cells induces an L-canavanine-activated nonselective cation conductance. We conclude that three GRs collaborate to produce a functional L-canavanine receptor. Thus, our results clarify the full set of GRs underlying the detection of a toxic tastant that drives avoidance behaviour in an insect

    Quasi-Eigenstate Evolution in Open Chaotic Billiards

    Full text link
    We experimentally studied evolution of quasi-eigenmodes as classical dynamics undergoing a transition from being regular to chaotic in open quantum billiards. In a deformation-variable microcavity we traced all high-Q cavity modes in a wide range of frequency as the cavity deformation increased. By employing an internal parameter we were able to obtain a mode-dynamics diagram at a given deformation, showing avoided crossings between different mode groups, and could directly observe the coupling strengths induced by ray chaos among encountering modes. We also show that the observed mode-dynamics diagrams reflect the underlying classical ray dynamics in the phase space.Comment: 4 pages, 4 figure

    Development of deformation-tunable quadrupolar microcavity

    Full text link
    We have developed a technique for realizing a two-dimensional quadrupolar microcavity with its deformation variable from 0% to 20% continuously. We employed a microjet ejected from a noncircular orifice in order to generate a stationary column with modulated quadrupolar deformation in its cross section. Wavelength red shifts of low-order cavity modes due to shape deformation were measured and were found to be in good agreement with the wave calculation for the same deformation, indicating the observed deformation is quadrupolar in nature.Comment: 7 pages, 6 figures, intended for Rev. Sci. Instu

    Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers

    Full text link
    Efficient nonresonant optical pumping of a high-Q scar mode in a two-dimensional quadrupole-deformed microlaser has been demonstrated based on ray and wave chaos. Three-fold enhancement in the lasing power was achieved at a properly chosen pumping angle. The experimental result is consistent with ray tracing and wave overlap integral calculations.Comment: 3 pages, 5 figure
    corecore