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Laser Beam Diagnostics in a Spatial Domain 

Tae Moon Jeong and Jongmin Lee 
Advanced Photonics Research Institute, 

 Gwangju Institute of Science and Technology 
Korea 

1. Introduction 

The intensity distribution of laser beams in the focal plane of a focusing optic is important 
because it determines the laser-matter interaction process. The intensity distribution in the 
focal plane is determined by the incoming laser beam intensity and its wavefront profile. In 
addition to the intensity distribution in the focal plane, the intensity distribution near the 
focal plane is also important. For a simple laser beam having a Gaussian or flat-top intensity 
profile, the intensity distribution near the focal plane can be analytically described. In many 
cases, however, the laser beam profile cannot be simply described as either Gaussian or flat-
top. To date, many researchers have attempted to characterize laser beam propagation using 
a simple metric for laser beams having an arbitrary beam profile. With this trial, researchers 
have devised a beam quality (or propagation) factor capable of describing the propagation 
property of a laser beam, especially near the focal plane. Although the beam quality factor is 
not a magic number for characterizing the beam propagation, it can be widely applied to 
characterizing the propagation of a laser beam and is also able to quickly estimate how 
small the size of the focal spot can reach. In this chapter, we start by describing the spatial 
profile of laser beams. In Section 2, the derivation of the spatial profile of laser beams will be 
reviewed for Hermite-Gaussian, Laguerre-Gaussian, super-Gaussian, and Bessel-Gaussian 
beam profiles. Then, in Section 3, the intensity distribution near the focal plane will be 
discussed with and without a wavefront aberration, which is another important parameter 
for characterizing laser beams. Although the Shack-Hartmann wavefront sensor is widely 
used for measuring the wavefront aberration of a laser beam, several other techniques to 
measure a wavefront aberration will be introduced. Knowing the intensity distributions 
near the focal plane enables us to calculate the beam quality (propagation) factor. In Section 
4, we will review how to determine the beam quality factor. In this case, the definition of the 
beam quality factor is strongly related to the definition of the radius of the intensity 
distribution. For a Gaussian beam profile, defining the radius is trivial; however, for an 
arbitrary beam profile, defining the beam radius is not intuitively simple. Here, several 
methods for defining the beam radius are introduced and discussed. The experimental 
procedure for measuring the beam radius will be introduced and finally determining the 
beam quality factor will be discussed in terms of experimental and theoretical methods.  

2. Spatial beam profile of the laser beam 

In this section, we will derive the governing equation for the electric field of a laser beam. 

The derived electric field has a special distribution, referred to as beam mode, determined 
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by the boundary conditions. Two typical laser beam modes are Hermite-Gaussian and 

Laguerre-Gaussian modes. In this chapter, we also introduce two other beam modes: top-

hat (or flat-top) and Bessel-Gaussian beam modes. These two beam modes become 

important when considering high-power laser systems and diffraction-free laser beams. 

These laser beam modes can be derived from Maxwell’s equations.  

2.1 Derivation of the beam profile  

When the laser beam propagates in a source-free (means charge- and current-free) medium, 
Maxwell’s equations in Gaussian units are: 

 
1

0
B

E
c t

∂
∇× + =

∂

GG
,  (2.1) 

 
1

0
D

H
c t

∂
∇× − =

∂

GG
, (2.2) 

 0D∇ ⋅ =
G

, (2.3) 

 and 0B∇ ⋅ =
G

 (2.4) 

where E
G

 and H
G

 are electric and magnetic fields. In addition, D
G

 and B
G

 are electric and 

magnetic flux densities defined as  

 4D E Pπ= +
G G G

 and 4B H Mπ= +
G G G

. (2.5) 

Polarization and magnetization densities ( P
G

 and M
G

) are then introduced to define the 

electric and magnetic flux densities as follows: 

 P Eχ=
G G

 and M Hη=
G G

. (2.6) 

As such, the electric and magnetic flux densities can be simply expressed as  

 D Eε=
G G

, and B Hμ=
G G

. (2.7) 

where ε  and μ  are the electric permittivity and magnetic permeability, respectively. Note 

that if there is an interface between two media, E
G

, H
G

, D
G

, and B
G

 should be continuous at 

the interface. This continuity is known as the continuity condition at the media interface. To 

be continuous, E
G

, H
G

, D
G

, and B
G

 should follow equation (2.8). 

 ( )2 1
ˆ 0n E E× − =

G G
, ( )2 1

ˆ 0n H H× − =
G G

, ( )2 1
ˆ 0n D D⋅ − =
G G

, and ( )2 1
ˆ 0n B B⋅ − =
G G

 (2.8) 

Next, using equation (2.5), and taking ∇×  in equations (2.1) and (2.2), equations for the 

electric and magnetic fields become  

 
2

2 2

1 4 1E P
E M

c t c tc t

π ⎡ ⎤∂ ∂ ∂
∇×∇× + = − + ∇×⎢ ⎥

∂ ∂∂ ⎢ ⎥⎣ ⎦

G GG G
, (2.9) 
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 and 
2 2

2 2 2

1 4 1H P M
H

c t cc t t

π ⎡ ⎤∂ ∂ ∂
∇×∇× + = ∇× −⎢ ⎥

∂∂ ∂⎢ ⎥⎣ ⎦

G G GG
. (2.10) 

Because the electric and magnetic fields behave like harmonic oscillators having a frequency 

ω  in the temporal domain, 
t

∂
∂

 can be replaced with iω− . Then, using the relation k
c

ω
=  (c 

is the speed of light), equations (2.9) and (2.10) become  

 ( ) ( ) ( ) ( )2 24E r k E r k P r ik M rπ ⎡ ⎤∇×∇× − = + ∇×⎣ ⎦
G G G GG G G G

, (2.11) 

 and ( ) ( ) ( ) ( )2 24H r k H r ik P r k M rπ ⎡ ⎤∇×∇× − = − ∇× +⎣ ⎦
G G G GG G G G

. (2.12) 

If we assume that the electromagnetic field propagates in free space (vacuum), then 

polarization and magnetization densities ( P
G

 and M
G

) are zero. Thus, the right sides of 

equations (2.11) and (2.12) become zero, and finally,  

 ( ) ( )2 0E r k E r∇×∇× − =
G GG G

, (2.13) 

 and ( ) ( )2 0H r k H r∇×∇× − =
G GG G

. (2.14) 

By using a BAC-CAB rule in the vector identity, equation (2.13) for the electric field  
becomes 

 ( ) ( )2 0E r E k E r∇∇ ⋅ −∇ ⋅∇ − =
G G GG G

. (2.15) 

We will only consider the electric field because all characteristics for the magnetic field are 

the same as those for the electric field, except for the magnitude of the field. Because the 

source-free region is considered, the divergence of the electric field is zero ( ( ) 0E r∇ ⋅ =
G G

). 

Finally, the expression for the electric field is given by 

 ( )2 0E k E r∇ ⋅∇ + =
G G G

.  (2.16) 

This is the general wave equation for the electric field that governs the propagation of the 
electric field in free space. In many cases, the propagating electric field (in the z-direction in 
rectangular coordinates) is linearly polarized in one direction (such as the x- or y-direction 
in rectangular coordinates). As for a linearly x-polarized propagating electric field,  
the electric field propagating in the z-direction can be expressed in rectangular coordinates 
as 

 ( ) ( ) ( )0
ˆ , , expE r iE x y z ikz=

G G
. (2.17) 

By substituting equation (2.17) into equation (2.18), the equation becomes 

 ( ) ( ) ( ) ( )
2 2 2

2
0 02 2 2

ˆ ˆ, , exp , , exp 0iE x y z ikz ik E x y z ikz
x y z

⎛ ⎞∂ ∂ ∂
+ + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

. (2.18) 
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Equation (2.18) is referred to as a homogeneous Helmholtz equation, which describes the 
wave propagation in a source-free space. By differentiating the wave in the z-coordinate, we 
obtain 

 ( ) ( ) ( ) ( ) ( ) ( )0
0 0

, ,
, , exp , , exp exp

E x y z
E x y z ikz ikE x y z ikz ikz

z z

∂∂
= +

∂ ∂
, (2.19) 

and 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
02

0 02

2
0

2

, ,
, , exp , , exp 2 exp

, ,
exp

E x y z
E x y z ikz k E x y z ikz ik ikz

zz

E x y z
ikz

z

∂∂
= − +

∂∂
∂

+
∂

. (2.20) 

In many cases, the electric field slowly varies in the propagation direction (z-direction). The 

slow variation of the electric field in z-direction can make possible the following 

approximation (slowly varying approximation): 

 
( ) ( )2

0 0

2

, , , ,
2

E x y z E x y z
k

zz

∂ ∂

∂∂
� . (2.21) 

By inserting equation (2.20) into equation (2.18) and using the assumption of equation (2.21), 

equation (2.18) becomes  

 
( ) ( ) ( )2 2

0 0 0

2 2

, , , , , ,
2 0

E x y z E x y z E x y z
ik

zx y

∂ ∂ ∂
+ + =

∂∂ ∂
. (2.22) 

Equation (2.22) describes how the linearly polarized electric field propagates in the z-
direction in the Cartesian coordinate. 

2.2 Hermite-Gaussian beam mode in rectangular coordinate 

In the previous subsection, we derived the equation for describing the propagation of a 

linearly polarized electric field. Now, the question is how to solve the wave equation and 

what are the possible electric field distributions. In this subsection, the electric field 

distribution will be derived as a solution of the wave equation (2.22) with a rectangular 

boundary condition. Consequently, the solution of the wave equation in the rectangular 

coordinate has the form of a Hermite-Gaussian function. Thus, the laser beam mode is 

referred to as Hermite-Gaussian mode in the rectangular coordinate; the lowest Hermite-

Gaussian mode is Gaussian, which commonly appears in many small laser systems.  

Now, let us derive the Hermite-Gaussian beam mode in the rectangular coordinate. The 

solution of equation (2.22) in rectangular coordinates was found by Fox and Li in 1961. In 

that literature, they assume that a trial solution to the paraxial equation has the form 

 ( ) ( ) ( )
2 2

0 , , exp
2

x y
E x y z A z ik

q z

⎡ ⎤+
= × −⎢ ⎥

⎢ ⎥⎣ ⎦
 (2.23) 
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where A(z) is the electric field distribution in z-coordinate and ( )q z  is the general 

expression for the radius of the wavefront of the electric field to be determined. For the time 

being, let us assume that the electric field distribution in x- and y-coordinates is constant. 

Then, if ( )q z  is complex-valued, ( )q z  can be expressed with real and imaginary parts as 

follows: 

 
( ) ( ) ( )
1 1 1

r i

i
q z q z q z

= − . (2.24) 

By inserting equation (2.24) into equation (2.23), the resulting equation will be 

 ( ) ( ) ( ) ( )
2 2 2 2

0 , , exp exp
2 2r i

x y x y
E x y z A z ik k

q z q z

⎡ ⎤ ⎡ ⎤+ +
= × − × −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. (2.25) 

The real part of equation (2.25) determines the magnitude distribution of the electric field 

and the imaginary part gives the spatial phase or wavefront profile. In a specific case such as 

the Gaussian beam profile, ( )iq z  determines the radius of the Gaussian beam, defined as  

 ( ) ( )2

i

w z
q z

π
λ

=  (2.26) 

where ( )w z  is the radius of the Gaussian beam profile. By calculating 
x

∂
∂

, 
y

∂
∂

, 
2

2x

∂
∂

, 
2

2y

∂
∂

, 

and 
z

∂
∂

 using equation (2.23), we can obtain 

 
( ) ( ) ( )

2 2
0 exp

2

x yE x
ik A z ik

x q z q z

⎡ ⎤+∂
= − × × −⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
, (2.27) 

 
( ) ( ) ( )

2 2
0 exp

2

y x yE
ik A z ik

y q z q z

⎡ ⎤+∂
= − × × −⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
,  (2.28) 

 
( )
( ) ( ) ( )

( ) ( )
2 2 2 22 2

20
2 2

exp exp
2 2

A z x y x yE x
ik ik k A z ik

q z q z q zx q z

⎡ ⎤ ⎡ ⎤+ +∂
= − × − − × −⎢ ⎥ ⎢ ⎥

∂ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
, (2.29) 

 
( )
( ) ( ) ( )

( ) ( )
2 2 2 2 22

20
2 2

exp exp
2 2

A z x y y x yE
ik ik k A z ik

q z q z q zy q z

⎡ ⎤ ⎡ ⎤+ +∂
= − × − − × −⎢ ⎥ ⎢ ⎥

∂ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
, (2.30) 

and  
( )

( ) ( )
( )

( )
( )

2 2 2 2 2 2
0

2
exp exp

2 22

dA z dq zx y x y x yE
ik ikA z ik

z dz q z dz q zq z

⎡ ⎤ ⎡ ⎤+ + +∂
= × − + × −⎢ ⎥ ⎢ ⎥

∂ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. (2.31) 

And, by inserting equations (2.27)–(2.31) into equation (2.22), equation (2.22) becomes 
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 ( )
( ) ( )

( )
( )

( ) ( )
2 2

2
2

2
1 1 0

dq z q z dA zx y ik
k A z

dz q z A z dzq z

⎡ ⎤⎛ ⎞⎛ ⎞ +
⎢ ⎥− − + =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

. (2.32) 

All relations in the parentheses on the left side of equation (2.32) should be zero in order to 
satisfy the above equation for any condition, i.e. 

 
( )

1
dq z

dz
=  and 

( )
( )

( )
1

q z dA z

A z dz
= −  or 

( )
( ) ( )

( )
( ) ( )

( )
( )

dA z dq z dq zdz dz

A z q z q z dq z q z
= − = − = − . (2.33) 

By integrating equation (2.33), the following relationship is obtained:  

 ( ) ( )0 0q z q z z z= + −  and 
( )
( )

( )
( )

0

0

q zA z

A z q z
= . (2.34) 

Now, let us consider the case that the electric field has a distribution in the x- and y-directions. 
In this case, it is convenient to separate variables and the electric field can be rewritten as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 , , , ,mn m n m nE x y z E x y z A z E x E y A q z E x E y⎡ ⎤= = = ⎣ ⎦ . (2.35) 

Here, if we only consider the electric field in x-z plane, then  

 ( ) ( ) ( ) ( )
2

, exp
2

m

x
E x z A q z E x ik

q z

⎡ ⎤
⎡ ⎤= × × −⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
. (2.36) 

And by differentiating the electric field, we obtain 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

2 2 2

2 2

2

2

2 2
2

2

exp
2

2 exp
2

1
exp

2

exp
2

m

m

m

m

x
E x A q z E x ik

q zx x

x x
A q z E x ik ik

x q z q z

x
A q z E x ik ik

q z q z

x x
A q z E x k ik

q zq z

⎡ ⎤∂ ∂⎡ ⎤= × × −⎢ ⎥⎣ ⎦∂ ∂ ⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤∂⎡ ⎤+ × × − × −⎢ ⎥ ⎢ ⎥⎣ ⎦ ∂ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎡ ⎤+ × × − × −⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

⎡ ⎤+ × × − × −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

, (2.37) 

and 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2

2
, exp exp

2 22
m m

d x x x
E x z A q z E x ik A q z E x ik ik

z dq q z q zq z

⎡ ⎤⎡ ⎤ ⎡ ⎤∂ ⎡ ⎤ ⎡ ⎤= × × − + × × × −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
.(2.38) 

By inserting equations (2.37) and (2.38) into equation (2.22), we obtain  

                ( ) ( ) ( )
( )

( ) ( ) ( )
2

2

2 1
2 0m m m

x d
E x ik E x ik A q z E x

q z x dq q zx A q z

⎡ ⎤∂ ∂ ⎢ ⎥⎡ ⎤− + − =⎣ ⎦∂ ⎡ ⎤∂ ⎢ ⎥⎣ ⎦⎣ ⎦
.         (2.39) 
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Next, by only considering the imaginary part in the beam parameter (we can assume the 
electric field is plane parallel in this case), the beam parameter becomes  

 
( ) ( )2

1
i

q z w z

λ
π

= − . (2.40) 

And, by inserting equation (2.40) into equation (2.39), we have 

 
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

2 22

2

2 1
2 0

2 2
m m m

w z w z d
E x x E x ik A q z E x

x dq q zx A q z

⎡ ⎤∂ ∂ ⎢ ⎥⎡ ⎤− + − =⎣ ⎦∂ ⎡ ⎤∂ ⎢ ⎥⎣ ⎦⎣ ⎦
. (2.41) 

Then, by substituting the variable with the relation ( )2x w z u= , we finally obtain 

 ( ) ( ) ( )
( )

( ) ( ) ( )
22

2

2 1
2 0

2
m m m

w z d
E u u E u ik A q z E u

u dq q zu A q z

⎡ ⎤∂ ∂ ⎢ ⎥⎡ ⎤− + − =⎣ ⎦∂ ⎡ ⎤∂ ⎢ ⎥⎣ ⎦⎣ ⎦
. (2.42) 

Note that equation (2.42) is similar to the differential equation for Hermite polynomials, 

( )mH x .  

 
( ) ( ) ( )

2

2
2 2 0m m

m

d H x dH x
x mH x

dxdx
− + =  (2.43) 

Thus, the electric field distribution has the form of a Hermite polynomial, i.e., 

 ( ) ( ) ( ) ( )
22

, exp
2

m m

x x
E x z A q z H ik

w z q z

⎛ ⎞ ⎡ ⎤
⎡ ⎤= × × −⎜ ⎟ ⎢ ⎥⎣ ⎦ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

. (2.44) 

In the same way, we can calculate the electric field distribution in the y-direction, and obtain 
the electric field distribution in the y-direction as 

 ( ) ( ) ( ) ( )
22

, exp
2

n n

y y
E y z A q z H ik

w z q z

⎛ ⎞ ⎡ ⎤
⎡ ⎤= × × −⎜ ⎟ ⎢ ⎥⎣ ⎦ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

. (2.45) 

Thus, generally, the electric field distribution in the x- and y-directions is 

 

 

E00 E10 E20E11 E21E00 E10 E20E11 E21  

Fig. 1. Intensity distributions for several Hermite-Gaussian laser beam modes. 
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 ( ) ( ) ( ) ( ) ( )
2 222

, , exp
2

mn m n

y x yx
E x y z A q z H H ik

w z w z q z

⎛ ⎞ ⎛ ⎞ ⎡ ⎤+⎡ ⎤= × × × −⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎣ ⎦ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦
, (2.46) 

though some Hermite polynomials of low order are given by 

 ( )0 1H x = , ( )1H x x= , ( ) 2
2 4 2H x x= − , and ( ) 3

3 8 12H x x x= − . (2.47) 

Figure 1 shows some low order Hermite-Gaussian beam modes in the rectangular 
coordinate. The intensity distribution of the lowest beam mode ( 0m n= = ) is Gaussian and 
the Gaussian intensity profile is called either the TEM00 mode or the fundamental mode. 

2.3 Laguerre-Gaussian beam mode in cylindrical coordinate 

We can also solve the differential equation (2.16) in the cylindrical coordinate with a radially 
symmetric boundary condition. The solution of the wave equation in the cylindrical 
coordinates has the form of a Laguerre function; thus, the solution is called the Laguerre-
Gaussian beam mode. In the cylindrical coordinates, the electric field propagating in the z-
direction is given by 

 
( ) ( ) ( ) ( ) ( )

2 2 2
2

2 2 2 2

, , , , , , , ,1 1
, , 0

E r z E r z E r z E r z
k E r z

r rr r z

φ φ φ φ
φ

φ
∂ ∂ ∂ ∂

+ + + + =
∂∂ ∂ ∂

. (2.48) 

The solution for the differential equation (2.48) has the form of Laguerre polynomials. As 
such, the solution of the differential equation is given by 

 ( ) ( )
( )

( )
( )

( )
( )

( )
( )

2 2

0 2 2

cos2 2
, , exp

sin

n

n
mn m

mr z r z r z
E r z E L

w z mw z w z

φ
φ

φ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟= × × × −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (2.49) 

Note that some low order Laguerre polynomials are given by 

( )0 1lL x = , ( )1 1lL x l x= + − , ( ) ( )( ) ( ) 2
2 1 2 2 2 2lL x l l l x x= + + − + + ,  

          and ( ) ( )( )( ) ( )( ) ( ) 2 3
3 1 2 3 6 2 3 2 3 2 6lL x l l l l l x l x x= + + + − + + + + − . (2.50) 

Figure 2 shows some low order Laguerre-Gaussian beam modes in the cylindrical 
coordinate. Note that as for the Hermite-Gaussian beam, the lowest beam mode is Gaussian 
and is also called the fundamental mode.  
 

E00 E10 E11

(sin)

E11

(cos)

E20E00 E10 E11

(sin)

E11

(cos)

E20

 
Fig. 2. Intensity distributions for several Laguerre-Gaussian laser beam modes. 
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2.4 Other beam modes 
2.4.1. Flat-top beam profile and super Gaussian beam profile 

In high-power laser systems, a uniform beam profile is required in order to efficiently 
extract energy from an amplifier. The uniform beam profile is sometimes called a flat-top (or 
top-hat) beam profile. However, the ideal flat-top beam profile is not possible because of 
diffraction; in many cases, a super-Gaussian beam profile is more realistic. The definition of 
the super-Gaussian beam profile is given by 

 2 2
0exp 2 nr w⎡ ⎤−⎣ ⎦ .  (2.51) 

Here, n  is called the order of the super-Gaussian beam mode and 0w  is the Gaussian beam 

radius when n  is 1. Figure 3 shows the intensity profiles for several super-Gaussian beam 

profiles having different orders. As shown in the figure, the intensity profile becomes flat in 
the central region as the order of the super-Gaussian beam profile increases. Note that the 
flat-top beam profile is a specific case of the super-Gaussian beam profile having an order of 
infinity.  
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Fig. 3. Intensity distributions and their line profiles for several super-Gaussian laser beam 
modes having a different super-Gaussian order n. 

2.4.2 Bessel-Gaussian beam profile 

In this subsection, we will introduce a special laser beam mode called a Bessel beam. The 
Bessel function is a solution of the wave equation (2.16) in the cylindrical coordinate. Until 
1987, the existence of the Bessel laser beam was not experimentally demonstrated. 
Theoretically, the Bessel laser beam has a special property that preserves its electric field 
distribution over a long distance. This is why the Bessel laser beam is referred to as a 
diffraction-free laser beam mode. However, in real situations, the Bessel laser beam mode 
preserves its electric field distribution for a certain distance because of the infinite power 
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problem. Now, let us derive the Bessel laser beam mode from the wave equation. The wave 
equation in the cylindrical coordinate can be rewritten as  

 
( ) ( ) ( ) ( ) ( )

2 2 2
2

2 2 2 2

, , , , , , , ,1 1
, , 0

E r z E r z E r z E r z
k E r z

r rr r z

φ φ φ φ
φ

φ
∂ ∂ ∂ ∂

+ + + + =
∂∂ ∂ ∂

. (2.48) 

Then, using the separation of variables, the solution for equation (2.48) is 

 ( ) ( ) ( ), , , expE r z E r i zφ φ β= × − , (2.52) 

and by inserting equation (2.52) into equation (2.48), equation (2.48) becomes 

 
( ) ( ) ( ) ( ) ( )

2 2
2 2

2 2 2

, , , , , ,1 1
, , 0

E r z E r z E r z
k E r z

r rr r

φ φ φ
β φ

φ
∂ ∂ ∂

+ + + − =
∂∂ ∂

. (2.53) 

If the electric field is radially symmetric, then the electric field ( ), ,E r zφ  becomes ( ),E r z  

and the derivative with respect to the angular direction vanishes, i.e., 

 
( ) ( ) ( ) ( )

2
2 2 2 2

2

, ,
, 0

E r z E r z
r r k r E r z

rr
β

∂ ∂
+ + − =

∂∂
. (2.54) 

Note that equation (2.54) is similar to Bessel’s differential equation with an order of 0. The 
Bessel’s differential equation is expressed as 

 ( ) ( ) ( ) ( )
2

2 2 2 2
2

0v v v

d d
Z k Z k k v Z k

dd
ρ ρ ρ ρ ρ ρ

ρρ
+ + − = .  (2.55) 

And, the solution of equation (2.54) is given by 

 ( ) ( ) ( )2 2
0 0, expE r z E J k r i zβ β= × − × − . (2.56) 

Thus, the solution in the cylindrical coordinate for the differential equation for the electric 
field is shown to be the Bessel function. Figure 4 presents the intensity distribution and 
profile for the Bessel laser beam mode.  

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

 

Fig. 4. Intensity distribution and its line profile for Bessel laser beam mode. 
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In 1987, Gori et al. introduced the Bessel-Gaussian laser beam mode to avoid the infinite 
power problem. In the Bessel-Gaussian laser beam mode, the electric field is given by 

 ( ) ( ) ( )
( )

2
0

0 0 0 2
0

, exp
r z

E r z E J r
w z

β
⎛ ⎞
⎜ ⎟= × × −
⎜ ⎟
⎝ ⎠

. (2.57) 

3. Intensity distribution of the focused laser beam 

In the previous section, we derived the electric field distribution referred to as the laser 
beam mode. In order to determine the beam quality (or propagation) factor for the laser 
beam mode, we need to know the focusing property of the laser beam. The electric field 
distribution of a focused laser beam can be theoretically calculated from an incident beam 
profile. In this section, the calculation of the electric field distribution of a focused laser 
beam is introduced. For this task, three different approaches are used: a geometrical 
approach using a ray transfer matrix, a wave optics approach using diffraction theory, and a 
Fourier transform approach. From the geometrical approach, the physical insight and useful 
relationships for Gaussian beam parameters before and after a focusing optic can be easily 
obtained. However, if the incident beam profile is not Gaussian and has a wavefront 
aberration, it becomes more difficult to use the geometrical approach to explain the focusing 
property of the laser beam. In this case, the wave optics approach using diffraction theory 
gives more accurate calculation results. The wave optics approach offers analytic solutions 
for a Gaussian and uniform laser beams. However, the wave optics approach does not 
provide an analytical solution for an arbitrary incident laser beam mode. In this case, the 
Fourier transform approach becomes very useful. By using the Fourier transform method, 
the electric field distribution of the focused laser beam can be easily obtained and, together 
with the focus shift method, the electric field distribution near the focal plane can be quickly 
obtained. In particular, the Fourier transform approach is more useful for a laser beam 
having a wavefront aberration. 

3.1 Geometrical approach 
Propagation of the electric field can be described by the ray transfer matrix of an optical 
element. The ray transfer matrix determines the deviation angle at a location of the optical 
element; this matrix is also called the ABCD matrix and is expressed by 

 
A B

C D

⎡ ⎤
⎢ ⎥
⎣ ⎦

. (3.1) 

Let us now consider the case in which a Gaussian laser beam passes through an optical 

element having ABCD elements. The Gaussian beam mode [ ( )1 1 1 1, ,E x y z ] before the optical 

element is again  

 ( ) ( ) ( )
2 2
1 1

1 1 1 1 1
1

, , exp
2

x y
E x y z A z ik

q z

⎡ ⎤+
= × −⎢ ⎥

⎢ ⎥⎣ ⎦
 and 

( ) ( ) ( )2
1 1 1 1

1 1
i

q z R z w z

λ
π

= − . (3.2) 

Then, when the Gaussian laser beam passes through the optical element, the electric field 
right after the optical element is determined by 
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( ) ( ) ( ) ( )

( ) ( )

2 2 2
2 2 1 1 1 1 2 1 2 1

1

2 2
1 1 2 1 2 1

1

, exp exp 2
2

exp 2
2

ik
E x z A z x i Ax Dx x x dx

q z B

ik i
A z A x i Dx i x x dx

q z B B B

π
λ

π π π
λ λ λ

⎡ ⎤ ⎡ ⎤− − + −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞
⎢ ⎥= − + − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫

∫

∼

. (3.3) 

 

Here, only the electric field in the x-direction is considered, though the electric field in the y-
direction can be calculated in the same manner. After some calculation, the electric field 
after the optical element is given by 

 ( ) 2
2 2 2

1

1

1
exp

2
2

ik
E x x D

ik i B B q AA
q B

π
π
λ

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦+

. (3.4) 

The following definite integral formula (3.5) is used to derive equation (3.4).  

 ( )
2

2exp 2 exp
b

ax bx dx
a a

π∞

−∞

⎛ ⎞
− − = ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ . (3.5) 

Because the determinant of the matrix is 1 (i.e., 1AD BC− = ), the electric field distribution 

after the optical element can be rewritten as follows: 

 ( ) 2 1
2 2 2

1

1

exp
2

2

q C Dik
E x x

ik i q A BA
q B

π
π
λ

⎡ ⎤⎛ ⎞+
= −⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦+

.  (3.6) 

By defining 
2

1

q
 as 1

1

q C D

q A B

+
+

, the resultant electric field distribution again has the same 

expression as the incident electric field except for the laser beam parameter 2q , such that 

 ( ) 2
2 2 2

2

exp
2

ik
E x x

q

⎡ ⎤
−⎢ ⎥
⎣ ⎦

∼ . (3.7) 

 

Again, let us assume the Gaussian laser beam is focused by a focusing optic having a focal 

length of f . Then, we need to determine the electric field distribution at the focal plane of 

the focusing optic; the ray transfer matrix for a focusing optic and a free distance is given by 

 
1 1 0 0

0 1 1 1 1 1

A B f f

C D f f

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (3.8) 

If the incident Gaussian laser beam is an ideal plane wave (i.e. ( )1R z = ∞ ), ( )1q z  is simply 

defined as 
( )2

1 1w z
i
π

λ
. Then, 

2

1

q
 can be quickly calculated as 
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For a Gaussian laser beam

1
w

1 1 0 0

0 1 1 1 1 1

f f

f f

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ABCD matrix

2
1

f
w

w
λ
π=

Focal length = f

Distance = f

For a Gaussian laser beam

1
w

1 1 0 0

0 1 1 1 1 1

f f

f f

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ABCD matrix

2
1

f
w

w
λ
π=
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Distance = f

 

Fig. 5. Focusing Gaussian laser beam mode having a focusing optic with a focal length of f . 

2
1

2 2
2 2 2

1 1 1 1w
i i

q R fw f

λ π
λπ

= − = − + .                         (3.9) 

Thus, the intensity profile of a focused Gaussian beam is again Gaussian with a new 

Gaussian width 2w , which is given by  

 1
2 2

1 R

f w f
w

w z

λ
π

= = , (3.10) 

where Rz  is defined as 1
2 2

1 R

f w f
w

w z

λ
π

= =  and called the Rayleigh range, at which point the 

area of the laser beam increases by a factor of 2. The electric field distribution near the focal 

plane can be calculated by replacing the focal length f  with the distance d  in equation 

(3.8). However, even if an arbitrary optical element having an arbitrary wavefront 
aberration can be represented by a ray transfer matrix, the general description of the electric 
field distribution for an arbitrary electric field cannot be simply expressed by the 
geometrical approach. 

3.2 Wave optics approach using diffraction theory 
Now, in this section, we will directly calculate the electric field distribution based on the 
diffraction integral. Again, consider that an electric field converges from a focusing optic 
having a focal length of f  to the axial focal point. Then, the electric field distribution at a 

point ( 2x , 2y ) in the focal plane is given by  

 ( ) ( )2 2 1 1 1 1 1, ,
ikf iksi e e

E x y E x y dx dy
f sλ

−

= − ∫ . (3.11) 
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Fig. 6. Diffraction of electric field at a focusing optic having a focal length f . 

To evaluate equation (3.11), let us assume that the focusing optic is circular and that the 

radius of the focusing optic is a . Then, it is convenient to express ( 1x , 1y , 1z ) and 

( 2x , 2y , 2z ) in the cylindrical coordinate as follows: 

 1 sinx aρ θ= , 1 cosy aρ θ= , and 2 sinx r ϕ= , 2 cosy r ϕ=  (3.12) 

where ρ  extends from zero to 1. In this expression, from Fig. 6, the difference s f−  and the 

small area of 1 1dx dy  can be, via an approximation, expressed as 

 s f q R− = − ⋅
GG

 and 2
1 1dx dy f d= Ω  (3.13) 

where dΩ  is the infinitesimal solid angle. Then, using the approximation s f≈ , the electric 

field distribution at a point ( 2x , 2y ) becomes 

 ( ) ( )2 2 1 1 1, , kq Ri
E x y E x y e d

λ
− ⋅= − Ω∫

GG
. (3.14) 

Equation (3.14) is known as the Debye integral and expresses the electric field as a 
superposition of plane wave components having different directions of propagation, known 
as angular spectrums. The phase component in the integral is  

 1 2 1 2 1 2x x y y z z
q R

f

+ +
⋅ =
GG

, (3.15) 

and the axial position 1z  of element 1 1dx dy  from the origin of ( 2x , 2y , 2z ) is 

 
2 2 4 4

2 2 2
1 2 4

1 3
1

2 8

a a
z f a f

f f

ρ ρρ
⎡ ⎤

= − − = − − + −⎢ ⎥
⎢ ⎥⎣ ⎦

" . (3.16) 
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By inserting equation (3.16) into equation (3.15) and using f a� , we obtain the following 

expression for the phase component in the Debye integral: 

 
( ) 2 2

1 2 1 2 1 2
2

cos2 2 1
1

2

a rx x y y z z a
kq R k z

f f f

ρ θ ϕπ π ρ
λ λ

⎡ ⎤−+ +
⋅ = = − −⎢ ⎥

⎢ ⎥⎣ ⎦

GG
. (3.17) 

Then, by introducing dimensionless variables u  and v  in the focal plane, defined as 

 

2
2 a

u z
f

π
λ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 and 
2 a

v r
f

π
λ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

, (3.18) 

the phase component in the Debye integral is 

 ( )
2

21
cos

2

f
kq R v u u

a
ρ θ ϕ ρ⎛ ⎞⋅ = − − +⎜ ⎟

⎝ ⎠

GG
. (3.19) 

Thus, equation (3.14), which expresses the electric field distribution in the focal plane, becomes 

 ( ) ( ) ( )
22 1 2 2

2 0 0

1
, exp , exp cos

2

fi a
E u v i u E i v u d d

af

π
ρ θ ρ θ ϕ ρ ρ ρ θ

λ

⎡ ⎤ ⎧ ⎫⎛ ⎞ ⎡ ⎤⎢ ⎥= − − − +⎨ ⎬⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎩ ⎭⎣ ⎦
∫ ∫ .(3.20) 

And, if the incoming electric field is radially symmetric, equation (3.20) can be simply 
expressed as 

 ( ) ( ) ( )
22 1 2

02 0

2 1
, exp exp

2

fi a
E u v i u E J v i u d

af

π ρ ρ ρ ρ ρ
λ

⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥= − −⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦
∫ , (3.21) 

using the definition of Bessel function.  

 ( ) ( )
2

0 0

1
exp cos

2
J x ix d

π
θ θ

π
= ∫ . (3.22) 

If we consider the uniform intensity profile, then the incoming electric field is constant with 

respect to the position (i.e. ( ),E Cρ θ = ). In this case, the electric field distribution in the 

focal plane has the form  

 ( ) ( )
22 1 2

02 0

2 1
, exp exp

2

fa C
E u v i i u J v iu d

af

π ρ ρ ρ ρ
λ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦
∫ . (3.23) 

To calculate equation (3.35) further, we separate the integral into the real and imaginary 
parts.  

( ) ( ) ( )
22 1 12 2

0 02 0 0

2 1 1
, exp cos sin

2 2

fa C
E u v i i u J v u d i J v u d

af

π ρ ρ ρ ρ ρ ρ ρ ρ
λ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦
∫ ∫ . (3.24) 
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There are two different cases in evaluating the integrals in equation (3.24). In the first case, 

when / 1u v <  (i.e. inside the geometrical shadow), we use the relation for the Bessel 

function to obtain  

( ) ( )
1 12 2

0 10 0

1 2 1
2 cos cos

2 2

d
J v u d J v u d

v d
ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ
⎛ ⎞ ⎛ ⎞⎡ ⎤=⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠∫ ∫  

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 2
1 10

3 2 4

1 3 2 4

1 2

2 1 1
cos sin

2 2

cos 2 sin 2

2 2

cos 2 sin 2
, ,

2 2

J v u u J v u d
v

u uu u u u
J v J v J v J v

u v v u v v

u u
U u v U u v

u u

ρ ρ ρ ρ ρ
⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥= − + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

= +

∫

" " . (3.25) 

where the following definition of the Lommel function ( ),nU u v  and the relation for the 

Bessel function are used to obtain equation (3.25): 

 ( ) ( ) ( )
2

2
0

, 1
n s

s
n n s

s

u
U u v J v

v

+∞

+
=

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∑ , (3.26) 

 and ( ) ( )1 1
1

n n
n n

d
x J x x J x

dx
+ +

+
⎡ ⎤ =⎣ ⎦ . (3.27) 

In a similar way, we obtain the expression for the imaginary part: 

 ( ) ( ) ( ) ( ) ( )1 2
0 1 20

sin 2 cos 21
2 sin , ,

2 2 2

u u
J v u d U u v U u v

u u
ρ ρ ρ ρ⎛ ⎞ = −⎜ ⎟

⎝ ⎠∫ . (3.28) 

In the second case, when / 1u v >  (i.e. outside the geometrical shadow), we evaluate 

equation (3.24) by integrating by parts with respect to the trigonometric function in order to 

finally obtain the expressions for the real and imaginary parts as follows: 

 ( )
( ) ( ) ( ) ( ) ( )

2
1 2

0 0 10

sin 2 sin 2 cos 21
2 cos , ,

2 2 2 2

v u u u
J v u d V u v V u v

u u u
ρ ρ ρ ρ⎛ ⎞ = + −⎜ ⎟

⎝ ⎠∫ , (3.29) 

and ( )
( ) ( ) ( ) ( ) ( )

2
1 2

0 0 10

cos 2 cos 2 sin 21
2 sin , ,

2 2 2 2

v u u u
J v u d V u v V u v

u u u
ρ ρ ρ ρ⎛ ⎞ = − −⎜ ⎟

⎝ ⎠∫ . (3.30) 

The other definition of the Lommel function, ( ),nV u v , is then used for obtaining equations 

(3.29) and (3.30). 

 ( ) ( ) ( )
2

2
0

, 1
n s

s
n n s

s

v
V u v J v

u

+∞

+
=

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∑ . (3.31) 
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Fig. 7. Intensity distribution near the focal plane calculated using the diffraction integral 
approach when a flat-top beam profile is focused. 

Now, let us calculate the electric field distribution in the focal plane from equations (3.21), 

(3.25), (3.28), (3.29), and (3.30). First, in the region / 1u v < , we use equations (3.21), (3.25), 

and (3.28) to calculate the intensity distribution. 

 ( ) ( ) ( )2 2
1 2

0 2

, ,
, 4

U u v U u v
I u v I

u

⎡ ⎤+
= ⎢ ⎥

⎢ ⎥⎣ ⎦
. (3.32) 

Figure 7 shows the intensity distribution near the focal plane calculated using equation 

(3.32) when a flap-top laser beam is focused. In the special case of a focal plane ( 0u = ), the 

intensity distribution is 

 ( ) ( )2
1

0 2
0, 4

J v
I v I

v
= .  (3.33) 

Thus, as shown in equation (3.33), the Airy function is obtained when we focus a uniform 
electric field. If the incoming laser beam has a Gaussian beam profile, then the electric field 
distribution in equation (3.21) has the form  

 ( )
2 2

1 2
0

exp
a

E C
w

ρρ
⎡ ⎤

= × −⎢ ⎥
⎢ ⎥⎣ ⎦

. (3.34) 

In equation (3.34), we only consider the case of a plane wave (i.e. R = ∞ ). By inserting 
equation (3.34) into equation (3.21), equation (3.21) becomes 

 

( ) ( )

( )

22 2 21 2
02 20

0

21 2
0 20

0

2 1
, exp exp exp

2

exp
2

fi a C a
E u v i u J v i u d

af w

a u
J v i d

w

π ρ ρ ρ ρ ρ
λ

ρ ρ ρ ρ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥= − − −⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤⎛ ⎞

≈ − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫

∫
. (3.35) 
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Again, in the special case of a focal plane ( 0u = ), the electric field distribution in the focal 

plane is 

 ( ) ( )
2 21

0 20
0

0, exp
a

E v J v d
w

ρρ ρ ρ
⎛ ⎞

≈ −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ . (3.36) 

To integrate equation (3.36), we use the following definite integral formula: 

 ( ) ( ) ( )
2 2

2

0

1
exp exp

2 4 2
m m mx I x J x xdx J

β γ βγα β γ
α α α

∞ ⎛ ⎞− ⎛ ⎞− = ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∫ . (3.37) 

The small beam size approximation ( 0a w� ) is used to apply the definite integral formula. 

Then, the final expression for the incoming Gaussian beam is 

 ( ) ( )
2 2 2 22 2 21
0 0 0

0 2 2 2 2 20
0 1

0, exp exp exp
2 4 2

w w v wa r
E v J v d

w a a a w

ρρ ρ ρ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

≈ − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ . (3.38) 

From equation (3.38), the new Gaussian beam size for the focused electric field is obtained as 

 1
0

f
w

w

λ
π

= . (3.39) 

Obviously, the new Gaussian beam size for the focused electric field calculated from the 
Debye integral is exactly the same as that calculated from the geometrical approach. Unlike 
the above special cases (uniform and Gaussian field profiles), an analytical solution for the 
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Fig. 8. Focusing laser beam: geometrical optics and wave optics approaches. 
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focused electric field does not exist for an electric field having an arbitrary magnitude and 

wavefront. Thus, in case of an arbitrary electric field, it is convenient to use the Fourier 

transform approach to calculate the focused electric or intensity distribution in and near the 

focal plane.  

3.3 Fourier transform approach 

If we assume that a laser beam is focused with an ideal focusing optic having a focal length 

f , then the electric field distribution at the focal plane can be expressed by 

 ( ) ( ) ( ) ( )2 2 2 1 1 1 1 1 1 2 1 2 1 1, , exp , exp
k

E x y E x y ikW x y i x x y y dx dy
f

∞

−∞

⎡ ⎤
⎡ ⎤ +⎢ ⎥⎣ ⎦

⎣ ⎦
∫∼ . (3.40) 

This integral form represents the Fourier transform of the incident electric field having an 

arbitrary wavefront aberration ( )1 1,W x y . Now, let us quickly review the derivation of 

equation (3.40). Consider that a monochromatic electric field ( )1 1 1,E x y  converges by a 

focusing optic having a focal length f  to the axial focal point. Again, the electric field 

distribution at a point ( 2x , 2y ) in the focal plane is given by  

 ( ) ( )2 2 1 1 1 1 1, ,
ikf iksi e e

E x y E x y dx dy
f sλ

−

= − ∫  (3.11) 

where 1x  and 1y  are the coordinates in the aperture plane, and s  is the distance from a 

certain point in the focusing optic to the point ( 2x , 2y ). Then, if we express s  in the (x, y) 

coordinate, s  is  

 

( ) ( )
2 2

22 2 1 21 2
1 2 1 2 2 2

2 2

2 2

1 21 2
2

2 2

1

1 1
1

2 2

y yx x
s x x y y z z

z z

y yx x
z

z z

⎛ ⎞ ⎛ ⎞−−
= − + − + = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞−−⎢ ⎥≈ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

. (3.41) 

Because the phase of the electric field varies more quickly than the magnitude, we can 

approximate s  such that 2s z f≈ ≈  in the expression related to the magnitude. Thus, 

equation (3.11) becomes 

( ) ( ) ( ) ( ) ( )2 2 2 2
2 2 2 2 1 1 1 1 1 1 2 1 2 1 12
, exp , exp exp

2 2

ikfi e ik ik k
E x y x y E x y x y x x y y dx dy

f f ffλ

− ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − + + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∫ . (3.42) 

We then derive the expression for electric field distribution in a focal plane when the electric 

field is focused with a focusing optic having a focal length f . In equation (3.42), one 

important consideration is the phase delay due to the focusing optic; the phase function 

including phase delay should be considered in the electric field ( )1 1 1,E x y . For this task, we 

first have to obtain the expression for the phase delay. If we consider a lens having the 

thickness shown in Fig. 9, then the phase delay after the lens is  
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Fi. 9. Calculation of lens thickness function for inducing the phase delay. 

 ( ) ( ) ( )1 1 1 1 0 1 1, , ,x y nkT x y k T T x yφ ⎡ ⎤= + −⎣ ⎦  (3.43) 

where n  is the refractive index of the lens, 0T  is the center thickness of the lens, and 

( )1 1,T x y  is the thickness function of the lens at a position ( 1x , 1y ). By considering the 

geometry of the lens in Fig. 9, the thickness function ( )1 1,T x y  can be written as 

 ( )
2 2 2 2
1 1 1 1

1 1 0 1 22 2
1 2

, 1 1 1 1
x y x y

T x y T R R
R R

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟= − − − + − −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (3.44) 

Then, by using a paraxial approximation, we can take only the first two terms in the Taylor 

series of . The thickness function can be simply rewritten as 

 ( )
2 2
1 1

1 1 0
1 2

1 1
,

2

x y
T x y T

R R

⎛ ⎞+
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
. (3.45) 

From equation (3.45), the phase function ( )1 1,P x y  after a thin lens is 

 ( ) ( ) ( )2 2
1 1 1 1 1 1, exp , exp

2

k
P x y i x y i x y

f
φ

⎡ ⎤
⎡ ⎤= − = − +⎢ ⎥⎣ ⎦

⎣ ⎦
. (3.46) 

Note that the mathematical formula (3.47) for a lens having radii 1R  and 2R  is used to 

derive equation (3.46). 

 ( )
1 2

1 1 1
1n

f R R

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
. (3.47) 

Thus, the final expression for the electric field ( )1 1 1,E x y  after the lens is  

 ( ) ( ) ( )2 2
1 1 1 0 1 1 1 1, , exp

2

k
E x y E x y i x y

f

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 (3.48) 

where ( )1 1 1,E x y  means the electric field before the focusing optic. By substituting equation 

(3.48) into equation (3.42), we quickly obtain equation (3.40). By the same analogy used in 

equation (3.48), the expression for the wavefront aberration is introduced in equation (3.40). 
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From equation (3.40), in order to obtain the electric field distribution at the focal plane, an 

accurate measurement of the wavefront aberration is required.  
The wavefront aberration means the deviation of the spatial phase of the laser beam from 
the reference phase, typically due to imperfections in optics used in the laser system and the 
beam delivery line and the thermal property of the laser crystal. The wavefront aberration, 
especially higher-order aberrations, is usually negligible in a small laser system. However, 
as the size of the laser system (specifically, the beam size) becomes larger, the wavefront 
aberration of the laser beam can no longer be considered negligible. The wavefront 

aberration can be expressed using Zernike polynomials ( ),m
nZ x y  as follows:   

 ( ) ( )
,

, ,m
nm nn m

W x y c Z x y=∑  (3.49) 

where n  and m  are the radial and azimuthal order for the Zernike polynomial, and nmc  is 

the Zernike coefficient. A double-index scheme in the OSA/ANSI standard is generally used 

to label the Zernike coefficients.  
The Shack-Hartmann wavefront sensor is commonly used to measure the wavefront 
aberration. Figure 10 presents a typical schematic diagram of a Shack-Hartmann wavefront 
sensor, which consists of a microlens array and a CCD camera. The size of the microlens 
array ranges from about 100 µm to several hundreds of µm. The microlens array divides the 
laser beam into hundreds of sub-apertures and focuses them onto the CCD camera. The 
CCD camera then records the focal spots formed by the microlens array. Next, the locations 
of focal spots are calculated and compared to the reference position, i.e., when the laser 
beam has no wavefront aberration. Here, deviations from the reference positions provide 
the wavefront information. Once the wavefront aberration is obtained, the electric field 
distribution in the focal plane can be quickly calculated using equation (3.40). 
Many other techniques, such as the interferometric method, have been devised to measure 
the wavefront of the laser beam. Figure 11 describes how to measure the wavefront 
aberration of a laser beam using a shearing interferometer. Also, the wavefront aberration 
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Fig. 10. Principle of Shack-Hartmann wavefront sensing. 
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Fig. 11. Lateral and radial shearing interferometers for measuring wavefront of laser beam. 

can be reconstructed by directly measuring the focal spot. This technique is called phase 
retrieval technique. However, the use of this technique is quite limited because the 
wavefront reconstruction takes time due to the iteration process.  

Because the Fourier transform only offers the electric field distribution in the focal plane, a 

special technique called the focus-shift technique is required in order to calculate the electric 

field distribution near the focal plane. Figure 12 explains the principle of focus-shift 

technique. In the figure, if an incident laser beam has no wavefront aberration, the laser 

beam is then focused at the focal plane of a focusing optic having a focal length of f . If a 

certain amount ( 20c  ) of defocus is intentionally added to the wavefront aberration of the 

laser beam, the laser beam itself will converge and the focal spot will instead be formed at 

position d , given by  

 20
2
0

4 31 c

d r
=  (3.50) 

where 20c  is the Zernike coefficient for defocus, and 0r  is the radius of the laser beam. Thus, 

the added defocus will act as a virtual focusing optic having a focal length of d . Again, if 

the defocused laser beam is focused by the focusing optic, a new focus will form at position 

newd  due to the dioptric law, such that (see Fig. 12(b)): 

 20
2
0

4 31 1 1 1

new

c

d f d f r
= + = + .  (3.51) 

According to Eq. (3.51), the position of the laser focal spot can be accurately controlled by 

adding a proper amount of defocus to the wavefront of the incoming laser beam. As 

mentioned above, this technique is useful in calculating the intensity distribution near the 

focal plane. Because the Fourier transform of a laser beam always provides the intensity 
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distribution in the focal plane of a focusing optic, the intensity distribution calculated with a 

different amount of defocus value expresses the intensity distribution of the original laser 

beam in the plane of z  (Fig. 12(b)). In the figure, z  is defined by newf d− ; thus, by 

introducing various amounts of defocus to the wavefront of an incoming laser beam and 

performing a finite Fourier transform (FFT), a full description of the three-dimensional 

intensity distribution near the focal plane is possible for an arbitrary laser beam without 

having to calculate the diffraction integral in equation (3.11). Of course, the focus-shift 

technique holds under the thin-lens approximation and under the condition of adding a 

small amount of defocus. Figure 13 shows the intensity distribution near the focal plane 

calculated using the Fourier transform approach when a flat-top laser beam profile is 

focused. As shown in the figure, the overall intensity profile is almost identical to that 

calculated with the wave optics approach. Also, the Fourier transform approach can be 

applied to quickly calculate the intensity distribution of a laser pulse near the focal plane. 

In order to calculate the intensity distribution of a laser pulse (especially for an ultrashort 

laser pulse in the femtosecond regime), we have to consider chromatic aberration induced 

by a focusing optic. The chromatic aberration means the change in defocus values at 

different wavelengths. Figure 14 shows the calculated and the measured defocus values 

( 20c s), as functions of wavelength, that were induced by the beam expanders in a high 

power Ti:sapphire laser system. Here, ray-tracing software was used to calculate 20c s for 

the beam expanders at different wavelengths, the values of which are seen to almost linearly 
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Fig. 12. Explanation of focus-shift technique introducing an arbitrary defocus into laser 
beam. 
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Fig. 13. Intensity distribution near the focal plane calculated using the Fourier transform 
approach when a flat-top beam profile is focused. 

decrease with increasing wavelengths. This decrease implies that, after the beam expanders, 
the short-wavelength component in the laser spectrum converges while the long-

wavelength component diverges. The slope of the decrease was 0.058 μm/10 nm. The 
change in defocus of the laser pulse in the spectral range was then measured to investigate 
the chromatic aberration caused by the beam expanders. A wavefront sensor was used to 
measure the defocus values of the laser pulse at different wavelengths.  
Bandpass filters having a bandwidth of 10 nm at wavelengths of 760, 780, 800, 820, and 840 
nm, respectively, were placed in front of the wavefront sensor to examine the dependence of 
the defocus value on the wavelength. The squares in Fig. 14 indicate the measured defocus 
values, and the error bars are the standard deviations of the measurement. The figure clearly 
shows that the measured defocuses of the laser pulse agree well with the calculated values 
for the beam expanders.  
Figure 15 shows the spatial and temporal intensity distributions at different positions near 
the focal plane with and without chromatic aberration. In this calculation, the use of an ideal 
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Fig. 14. Change in defocus values when the chromatic aberration of an ultrashort laser beam 
is not correctly compensated for. 
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focusing optic having a focal length of 1.5 m is assumed. The change in defocus shown in 
Fig. 14 was used in the calculations. The monochromatic electric field distributions in the 
focal plane were calculated in steps of 2 nm over the spectral range, and a focus-shift 
technique was used to calculate the spatial and temporal intensity distributions at different 
positions. In Fig. 15, the x-axis of each plot means the time, and the y-axis shows the vertical 
location at each position. Also, in the figure, by broadening the temporal duration of the 
focal spot the laser pulse having chromatic aberration showed a very different focusing 
property than the laser pulse without chromatic aberration. The calculations showed that 
the peak intensity of the focal spot with chromatic aberration was reduced to about 39% of 
that of the focal spot without chromatic aberration. The non-symmetric property of the 
intensity distributions against the focal plane originated from the non-symmetric profile of 
the laser spectrum. Moreover, with the chromatic aberration, a double-peak structure was 
observed in several positions near the focal plane. However, the double-peak structure 
disappeared, recovering to the original pulse duration, when the laser pulse propagated a 
long distance from the focal plane. Thus, the Fourier transform approach seems to be very 
useful in calculating the intensity distributions near the focal plane and finally determining 
the beam propagation properties in both cw and pulsed lasers. 
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Fig. 15. Spatial and temporal intensity distributions of focal spots at different positions near 
the focal plane.  

4. Beam quality factor 

4.1 Definition of beam radius 

The propagation of the laser beam can be partially characterized by the beam width and the 

divergence. In other words, defining the beam quality factor is closely related to the 

definition of the beam width. For the simple Gaussian laser beam profile, defining the width 

of the laser beam is trivial. As used in the previous subsections, 0w  and 1w  are used here 

for the incoming and focused Gaussian beam sizes. However, in some real situations for a 

complex beam profile with multiple intensity peaks, as shown in Fig. 16, a meaningful and 

accurate definition of the beam width is not easy. As pointed out by Prof. A. Siegman, there 

can be many possible definitions of the beam radius for an arbitrary beam profile: 

• Width (or half width) at first null 
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• Transverse knife edge widths 

• Width at 1/e or 1/e2 in the beam profile 

• Radius containing 86% of the entire power 

• Second-order moment 

• Others 
The radius containing 86% of the entire power can be used to calculate the beam 
propagation of a high-power laser beam in air. The second-order moment is useful to 
mathematically define the radius of an arbitrary laser beam profile. In the second-order 
moment, the beam radii for the x- and y-directions are defined by 
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. (4.1) 

In the cylindrical coordinate, the beam radius for a radially symmetrical beam profile is 
defined by 

 ( ) ( )
2 22 3

0 0 0 0
2 , ,rw r I r drd rI r drd

π π
ϕ ϕ ϕ ϕ

∞ ∞
= ∫ ∫ ∫ ∫ .  (4.2) 

Now, let us calculate the beam radius for a Gaussian laser beam in terms of the second-order 

moment. For a Gaussian laser beam having a radius 0w , equation (4.2) becomes 
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.  (4.3) 

And to calculate equation (4.3), we use the definite integral formula 
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Fig. 16. How to define the beam width for an arbitrary laser beam profile. 
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 ( )2 1 2
10

!
exp

2

n
n

n
x px dx

p

∞ +
+− =∫ . (4.4) 

Thus, for a Gaussian laser beam, we can quickly see the beam radius defined by the second-

order moment is again the Gaussian radius 0w . Thus, for a Hermite-Gaussian laser beam of 

order m  and n , equation (4.1) becomes 

 ( )2 2
02 1xw m w= + , and ( )2 2

02 1yw n w= + , (4.5) 

where the following integral formulae are used to obtain the expression for equation (4.5): 

 ( ) ( )
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In the same way, we can calculate the beam radius for a Laguerre-Gaussian laser beam 

having an arbitrary order. For a Laguerre-Gaussian laser beam, for p and l, equation (4.2) 

becomes 

 ( )2 2
, 02 1r plw p l w= + + . (4.8) 

For an Airy beam profile ( ( ) ( )2 2
0 1I r I J kar f r⎡ ⎤= ⎣ ⎦ ), which can be obtained by focusing a 

flat-top laser beam, equation (4.2) results in 

 
( )
( )

2
12 0
2
1

0

2r

rJ kar f dr
w

J kar f
dr

r

∞

∞
= = ∞∫

∫
. (4.9) 

 

The numerator in equation (4.9) continuously grows as the radius increases. Thus, as shown 

in equation (4.9), the radius is not defined for the Airy beam profile in terms of the second-

order moment.  

4.2 Theoretical determination of the beam quality factor 

As mentioned in Section 4.1, the beam quality factor is closely related to the beam 

propagation. Thus, knowing the intensity distribution near the focal plane is required. Let 

us begin with equation (3.2) to derive a useful relation for the beam radius with respect to 

the distance. As shown in equation (3.2), the general expression of the electric field for a 

laser beam is 

 ( ) ( ) ( )
2 2
1 1

1 1 1 1 1
1

, , exp
2

x y
E x y z A z ik

q z

⎡ ⎤+
= × −⎢ ⎥

⎢ ⎥⎣ ⎦
, and 

( ) ( ) ( )2
1 1 1 1

1 1
i

q z R z w z

λ
π

= − . (3.2) 
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In the plane ( 1 0z z= ) of the beam waist, ( )0R z = ∞  and 
( )0

1

q z
 becomes 

( )2
0 0

i
w z

λ
π

− . 

Then, after a distance z  from 0z , the ABCD matrix is given by 

 
1

0 1

A B z

C D

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
.  (4.10) 

Next, by using the relation 
( )

( )
( )

0

0

1 q z C D

q z q z A B

+
=

+
, we obtain 

 
( ) ( ) ( ) ( )22 22

0

1 1 1

1R R

i i
q z R z z z zw z w z z

λ λ
π π

= − = −
⎡ ⎤+ +⎢ ⎥⎣ ⎦

. (4.11) 

Again, the definition of the Rayleigh range ( 2
0Rz wπ λ= ) is used to derive equation (4.11). 

From this equation, the beam radius with respect to the distance from the focal plane, 0z , 

can be expressed by 

 ( ) ( )2
02 2

0 2
1

R

z z
w z w

z

⎡ ⎤−⎢ ⎥= +
⎢ ⎥
⎣ ⎦

. (4.12) 

 

Note that equation (4.12) is satisfied for all laser beam modes. From equation (4.12), we 

know that the change in the size of the beam mode follows a quadratic function with respect 

to the distance z (after this point, the sign  in equation (4.12) will be omitted for 

convenience). Then, by inserting equations (4.5) and (4.8) into equation (4.12), we can 

rewrite the beam radii for several laser beams as follows: 
For the Hermite-Gaussian beam mode: 

( ) ( ) ( )
2

222 2
, 0 02 2

0

2 1x m x
x

w z W m z z
W

λ
π

= + + −  and ( ) ( ) ( )
2

222 2
, 0 02 2

0

2 1y n y
y

w z W n z z
W

λ
π

= + + − .(4.13) 

For the Laguerre-Gaussian beam mode: 

 ( ) ( ) ( )
2

2 22 2
0, 02 2

0,

2 1pl pl
pl

w z W p l z z
W

λ
π

= + + + − . (4.14) 

Here, 2
0xW , 2

0yW , and 2
0,plW  are defined by ( ) 2

02 1m w+ , ( ) 2
02 1n w+ , and ( ) 2

02 1p l w+ + , 

respectively. In addition, it should be noted that in real situations the laser beam can have 

arbitrary beam profile. In this case, it is convenient to generalize the beam radius with 

respect to the distance as follows: 

 ( ) ( )
2

22 2 4
02 2

w z W M z z
W

λ
π

= + −  (4.15) 
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For a Gaussian laser beam
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Fig. 17. Beam quality factor, beam radius, divergence angle, and Rayleigh range. 

where 2M  is the beam quality factor. From equations (4.13) and (4.14), we can quickly 

recognize that, for the Hermite-Gaussian and Laguerre-Gaussian beam modes, the beam 

quality factors are given by ( )2 1m +  and ( )2 1p l+ + . 

Thus, by using equations (4.1) and (4.2), we can easily derive the property of the radius-
divergence product. 

 
2

2 2 4
2

W M
λθ
π

⎡ ⎤ =⎣ ⎦   (4.16) 

where θ  is the beam divergence defined in Fig. 17. Because the beam quality factor is 
invariant, it is not affected by the focusing optic once the focusing optic is ideal. In other 
words, using the invariant property of the beam quality factor, the radius-divergence 
product remains constant even under different focusing conditions and is given by 

 
2

2
0 0

0

W
W W M

Z

λθ θ
π

= = = . (4.17) 

Finally, from equation (4.17), the beam quality factor for an arbitrary laser beam can be 

directly calculated by using the second-order moments 2
,x yW  at the beam waist and the 

Rayleigh range ,x yZ : 

 
2

2 x
x

x

W
M

Z

π
λ

=  and 

2
2 y
y

y

W
M

Z

π
λ

= . (4.18) 

Now, let us calculate the beam quality factor by calculating the beam radii at different 
positions near the focal plane and the Rayleigh range from the beam radii. In calculating the 
beam radius, we employ the Fourier transform approach to obtain the intensity distribution, 
and from the calculated intensity distribution we can calculate the second-order moment as 
the beam radius. A Gaussian laser beam TEM00 is considered first. In this case, the Gaussian 
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Fig. 18. Calculation of beam radius and the Rayleigh range for Gaussian and higher-order 
Laguerre-Gaussian (10 and 20) laser beam modes. 

width 1w  of the input laser beam was assumed to be 10.337 mm. We also assume that a 
laser beam having no wavefront aberration is focused by an ideal focusing optic having a 
focal length of 238 mm, and that the size of the clear aperture of the focusing optic is 70 mm. 
The large aperture size ensures the extent of the laser beam to be enclosed in the focusing 
optic. However, the choice of focal length is not important in determining the beam quality 
factor. The theoretical Gaussian width of the focal spot was about 5.87 μm (calculated from 
equations (3.10) or (3.39)) at a wavelength of 0.8 μm. In the Fourier transform calculation, the 
Gaussian width of the focal spot was about 5.82 μm, which is very close to the theoretical 
width. The calculated second-order moment at the beam waist 2W  and the Rayleigh range 

0Z  were about 33.88 μm2 and 130.15 μm, respectively. As expected, the second-order 
moment for the Gaussian beam was given by the square of the Gaussian width. Figure 18 
shows the calculated second-order moment for the Gaussian and Laguerre-Gaussian laser 
beam modes. From the calculated second-order moment and the Rayleigh range, the beam 
quality factor for a Gaussian beam having no wavefront aberration was calculated as 1.02 
using equation (4.18), which is very close to the expected value of 1.00. Subsequent 
calculations with higher-order Gauss-Laguerre modes showed that the beam quality factors 
for TEM10 and TEM20 were 3.04 and 5.08, respectively. The calculated beam quality factors 
for higher modes were also very close to ( 2 1p l+ + ), as obtained from the analytical 
approach. It is thought that the small 1 to 2% error in the beam quality factor comes from 
calculating the second-order moment.  
The beam quality factor for a super-Gaussian beam profile was also investigated because the 
super-Gaussian beam profile represents the flat-top profile of a real laser beam. Figure 19 
shows the normalized intensity profiles and the calculated beam quality factors for Gaussian 
and super-Gaussian laser beams.  
The super-Gaussian orders are 2, 4, 6, 8, 10, 15, 20, 30, and 40 in the calculation. As shown in 
Fig. 19, the beam quality factor increases with the super-Gaussian order; the beam quality 
factors for the 30th- and 40th-order super-Gaussian beam profiles are 3.94 and 4.55, 
respectively. The increase in the beam quality factor with the super-Gaussian order is due to 
the energy or intensity spread in the focal plane, caused by Airy rings.  
With the super-Gaussian intensity profile and a serious wavefront aberration, the intensity 
distributions at positions -128, -64, 0, 64, and 128 µm from the focal plane are calculated as 
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Fig. 19. Intensity profiles of super-Gaussian laser beam modes and the calculated beam 
quality factors for various super-Gaussian orders. 

shown in Fig. 20. The intensity distributions show multiple spikes, and the energy is not 
well concentrated in a tiny spot because of the wavefront aberration. For these intensity 
distributions, calculating the second-order moment makes it possible to define the radius of 
the intensity distribution. In the figure, the blue diamonds and pink squares are the 

calculated second-order moments ( )2
xW z  and ( )2

yW z  in the horizontal and vertical 

directions, respectively. The use of an ideal focusing optic having a focal length of 0.238 m is 
assumed in this calculation. Again, the dashed line is the second-order polynomial curve fit. 
The calculated second-order moments for the aberrated laser beam fit the second-order 
polynomial function well, with the difference between the sagittal and tangential focuses 

( x yz z− ) being due to astigmatism in the laser pulse. The calculated beam quality factors 

2
xM  and 2

yM  for the aberrated laser beam were about 10.1 and 9.9 in the horizontal and the 

 

͡

ͦ͡͡

͢͡͡͡

ͦ͢͡͡

ͣ͡͡͡

ͣͦ͡͡

ͣ͞͡͡ ͢͞͡͡ ͡ ͢͡͡ ͣ͡͡

S
e
c
o
n
d
-o

rd
e
r 

in
te

n
s
it
y
 m

o
m

e
n
t

Axial position from the focus (μm)

Horizontal Vertical

z = 0 μm z = 64 μm z = 128 μmz = -64 μmz = -128 μm

My
2 = 9.9 Mx

2 = 10.1

͡

ͦ͡͡

͢͡͡͡

ͦ͢͡͡

ͣ͡͡͡

ͣͦ͡͡

ͣ͞͡͡ ͢͞͡͡ ͡ ͢͡͡ ͣ͡͡

S
e
c
o
n
d
-o

rd
e
r 

in
te

n
s
it
y
 m

o
m

e
n
t

Axial position from the focus (μm)

Horizontal Vertical

z = 0 μmz = 0 μm z = 64 μmz = 64 μm z = 128 μmz = 128 μmz = -64 μmz = -64 μmz = -128 μmz = -128 μm

My
2 = 9.9 Mx

2 = 10.1

 

Fig. 20. Calculated intensity distributions and beam radii calculated from the second-order 
moment. The beam quality factor is then calculated from the beam radii through the second-
order polynomial fit. 
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vertical directions, respectively. The calculated beam quality factors were about 2.6 and 2.5 
times higher than those obtained using the same intensity profile having no wavefront 
aberration. Thus, the beam quality factor can be computationally determined by measuring 
the intensity of an incoming laser beam and calculating the beam radii at various locations 
near the focal plane; indeed, calculating the beam radii at various locations is the same 
procedure as used in the experiment.  

4.3 Experimental determination of the beam quality factor 

In order to experimentally determine the beam quality factor, measuring the beam radius is 
first required. For this task, there is a specific instrument, generally called the M-square 
meter, used to evaluate the beam quality factor. As shown in Fig. 21, the M-square meter 
basically focuses an incoming laser beam with a relatively long focal length optic. Images at 
various planes near the focal plane are then recorded by a CCD camera, with beam radii 
subsequently calculated from the recorded images. Next, from the measured images and the 
beam radii at various planes, the beam waist and the Rayleigh range can be calculated. Once 
the beam waist and the Rayleigh range are calculated, the beam quality factor is again given 
by equation (4.18). Figure 22 shows the image captured from a commercial M-square meter, 
in which the measured radii at various locations in the M-square meter can be clearly seen. 
From the measured radii data, the beam quality factor is calculated.  
To define the beam diameter, several alternative measurement methods are provided by the 
International Standardization Office (ISO). In these methods, the beam diameter is defined 
from the power measurement, instead of the captured image of the laser beam; thus, proper 
attenuation and accurate calibration of the power meter are necessary. Several measurement 
methods include: 1) the variable diaphragm method, 2) the moving knife-edge method, and 
3) the moving slit method. For the variable diaphragm method, the incoming laser beam can 
be elliptical but the ratio between the major and the minor axis should be within 1.15:1. The 
variable diaphragm must be aligned to the beam center to within 10% of the beam diameter. 
For the knife-edge method, the distance between the energy levels of 10% and 90% should 
be measured and then multiplied by 1.56. For the moving slit method, a slit having 1/20 
width of the laser beam should be used in order to avoid convolution corrections. And, the 
width between the positions where irradiance has reached 13.5% of the maximum irradiance 
should be measured. 
 

Laser

Source

Focusing Lens

Waist width

Waist location

Measurement locations

Waist width

Waist location

Laser

Source

Focusing Lens

Waist width

Waist location

Measurement locations

Waist width

Waist location

 
Fig. 21. Optical setup for measuring the beam radii at various locations and determining the 
beam quality factor. 
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Fig. 22. Measured beam radius and beam quality factor obtained via the M-square meter. 

5. Conclusion 

The laser pulse has temporal and spatial beam characteristics. The temporal characteristics 
are related to the pulse duration and the temporal shape of the laser pulse. The spatial 
characteristics contain the spatial intensity (or electric field) distribution defined by modes 
and the phase profile of the electric field defined by the wavefront. In order to fully describe 
the laser pulse in time and space, spatial characteristics such as mode and wavefront should 
be precisely characterized, in addition to the temporal characteristics. In this Chapter, we 
describe the intensity distributions as the spatial characteristics of laser beams. In particular, 
the intensity distribution in the focal plane of a focusing optic or in the vicinity of the focal 
plane is very important in applications using laser systems because it determines the laser-
matter interaction process. We started by deriving the expression for the laser beam 
intensity and explained the physical background for deriving the mathematical expression 
of the intensity distribution in the focal plane and in the vicinity of the focal plane. 
Modification of the intensity distribution with wavefront in the laser beam then followed. 
Next, the laser pulse was fully characterized in the spatio-temporal domain. The full 
characterization of the laser pulse quickly introduced a useful concept called the beam 
quality (or propagation) factor M2. We also introduced standard methods for experimentally 
determining the beam quality factor and compared them to an indirect method to determine 
the beam quality factor based on information pertaining to the intensity and wavefront of 
the laser pulse. All these topics were discussed under the assumption of the Fraunhofer 
diffraction region.  
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