377 research outputs found
Influence of s-d interfacial scattering on the magnetoresistance of magnetic tunnel junctions
We propose the two-band s-d model to describe theoretically a diffuse regime
of the spin-dependent electron transport in magnetic tunnel junctions (MTJ's)
of the form F/O/F where F's are 3d transition metal ferromagnetic layers and O
is the insulating spacer. We aim to explain the strong interface sensitivity of
the tunneling properties of MTJ's and investigate the influence of electron
scattering at the nonideal interfaces on the degradation of the TMR magnitude.
The generalized Kubo formalism and the Green's functions method were used to
calculate the conductance of the system. The vertex corrections to the
conductivity were found with the use of "ladder" approximation combined with
the coherent-potential approximation (CPA) that allowed to consider the case of
strong electron scattering. It is shown that the Ward identity is satisfied in
the framework of this approximation that provides the necessary condition for a
conservation of a tunneling current. Based on the known results of ab-initio
calculations of the TMR for ballistic junctions, we assume that exchange split
quasi-free s-like electrons with the density of states being greater for the
majority spin sub-band give the main contribution to the TMR effect. We show
that, due to interfacial inter-band scattering, the TMR can be substantially
reduced even down to zero value. This is related to the fact that delocalized
quasi-free electrons can scatter into the strongly localized d sub-band with
the density of states at the Fermi energy being larger for minority spins
compared to majority spins. It is also shown that spin-flip electron scattering
on the surface magnons within the interface leads to a further decrease of the
TMR at finite temperature.Comment: REVTeX4, 20 pages, 9 figures, 1 table, submitted to Phys.Rev.B; In
Version 2 the text is substantially improved, the main results and
conclusions left the sam
Canted Magnetization Texture in Ferromagnetic Tunnel Junctions
We study the formation of inhomogeneous magnetization texture in the vicinity
of a tunnel junction between two ferromagnetic wires nominally in the
antiparallel configuration and its influence on the magnetoresistance of such a
device. The texture, dependent on magnetization rigidity and crystalline
anisotropy energy in the ferromagnet, appears upon an increase of ferromagnetic
inter-wire coupling above a critical value and it varies with an external
magnetic field.Comment: 5 pages, 4 figure
Electronic Phase Separation in Manganite/Insulator Interfaces
By using a realist microscopic model, we study the electric and magnetic
properties of the interface between a half metallic manganite and an insulator.
We find that the lack of carriers at the interface debilitates the double
exchange mechanism, weakening the ferromagnetic coupling between the Mn ions.
In this situation the ferromagnetic order of the Mn spins near the interface is
unstable against antiferromagnetic CE correlations, and a separation between
ferromagnetic/metallic and antiferromagnetic/insulator phases at the interfaces
can occur. We obtain that the insertion of extra layers of undoped manganite at
the interface introduces extra carriers which reinforce the double exchange
mechanism and suppress antiferromagnetic instabilities.Comment: 8 pages, 7 figures include
All Magnesium diboride Josephson Junctions with MgO and native oxide barriers
We present results on all-MgB2 tunnel junctions, where the tunnel barrier is
deposited MgO or native-oxide of base electrode. For the junctions with MgO,
the hysteretic I-V curve resembles a conventional underdamped Josephson
junction characteristic with critical current-resistance product nearly
independent of the junction area. The dependence of the critical current with
temperature up to 20 K agrees with the [Ambegaokar and Baratoff, Phys. Rev.
Lett. 10, 486 (1963)] expression. For the junctions with native-oxide,
conductance at low bias exhibits subgap features while at high bias reveals
thick barriers. As a result no supercurrent was observed in the latter, despite
the presence of superconducting-gaps to over 30 K.Comment: 8 pages with 3 figure
A superconducting absolute spin valve
A superconductor with a spin-split excitation spectrum behaves as an ideal
ferromagnetic spin-injector in a tunneling junction. It was theoretical
predicted that the combination of two such spin-split superconductors with
independently tunable magnetizations, may be used as an ideal
spin-valve. Here we report on the first switchable superconducting spin-valve
based on two EuS/Al bilayers coupled through an aluminum oxide tunnel barrier.
The spin-valve shows a relative resistance change between the parallel and
antiparallel configuration of the EuS layers up to 900% that demonstrates a
highly spin-polarized currents through the junction. Our device may be pivotal
for realization of thermoelectric radiation detectors, logical element for a
memory cell in cryogenics superconductor-based computers and superconducting
spintronics in general.Comment: 6 pages, 4 color figures, 1 tabl
Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO
The combination of ferromagnets with topological superconductors or
insulators allows for new phases of matter that support excitations such as
chiral edge modes and Majorana fermions. EuS, a wide-band-gap ferromagnetic
insulator with a Curie temperature around 16 K, and SrTiO (STO), an
important substrate for engineering heterostructures, may support these phases.
We present scanning superconducting quantum interference device (SQUID)
measurements of EuS grown epitaxially on STO that reveal micron-scale
variations in ferromagnetism and paramagnetism. These variations are oriented
along the STO crystal axes and only change their configuration upon thermal
cycling above the STO cubic-to-tetragonal structural transition temperature at
105 K, indicating that the observed magnetic features are due to coupling
between EuS and the STO tetragonal structure. We speculate that the STO
tetragonal distortions may strain the EuS, altering the magnetic anisotropy on
a micron-scale. This result demonstrates that local variation in the induced
magnetic order from EuS grown on STO needs to be considered when engineering
new phases of matter that require spatially homogeneous exchange
Revealing the magnetic proximity effect in EuS/Al bilayers through superconducting tunneling spectroscopy
A ferromagnetic insulator attached to a superconductor is known to induce an
exchange splitting of the Bardeen-Cooper-Schrieffer (BCS) singularity by a
magnitude proportional to the magnetization, and penetrating into the
superconductor to a depth comparable with the superconducting coherence length.
We study this long-range magnetic proximity effect in EuS/Al bilayers and find
that the exchange splitting of the BCS peaks is present already in the
unpolarized state of the ferromagnetic insulator (EuS), and is being further
enhanced when magnetizing the sample by a magnetic field. The measurement data
taken at the lowest temperatures feature a high contrast which has allowed us
to relate the line shape of the split BCS conductance peaks to the
characteristic magnetic domain structure of the EuS layer in the unpolarized
state. These results pave the way to engineering triplet superconducting
correlations at domain walls in EuS/Al bilayers. Furthermore, the hard gap and
clear splitting observed in our tunneling spectroscopy measurements indicate
that EuS/Al bilayers are excellent candidates for substituting strong magnetic
fields in experiments studying Majorana bound states.Comment: 9 pages, 4 color figure
Shot Noise in Magnetic Tunnel Junctions: Evidence for Sequential Tunneling
We report the experimental observation of sub-Poissonian shot noise in single
magnetic tunnel junctions, indicating the importance of tunneling via impurity
levels inside the tunnel barrier. For junctions with weak zero-bias anomaly in
conductance, the Fano factor (normalized shot noise) depends on the magnetic
configuration being enhanced for antiparallel alignment of the ferromagnetic
electrodes. We propose a model of sequential tunneling through nonmagnetic and
paramagnetic impurity levels inside the tunnel barrier to qualitatively explain
the observations.Comment: 5 pages, 5 figure
- …