160 research outputs found

    Assessment of intra-articular volume of the wrist: a comparative study between CT-arthrography and dissection

    Get PDF
    The aim of this study was to compare the intra-articular volumes of the wrist's joint measured by CT-arthrography and by dissection on ten cadavers. A good correlation was found between CT-arthrography and dissection in the assessment of the intra-articular volume of both wrist joints. A volume of 1.34 (±0.46) milliliter and 0.97 (±0.32) milliliter were found by Ct-arthrography for the radiocarpal and midcarpal joints, respectively. Dissection of the same wrists gives a volume of 1.24 (±0.33) and 0.90 (±0.21) for the radiocarpal and midcarpal joints, respectively. The knowledge of normal wrist-joint volume is a major prerequisite to evaluate carpal instability without ligaments' tears. We believe that CT-arthrography could be helpful in evaluating patients with suspected carpal instabilit

    Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations

    Get PDF
    Objectives: The purpose of this study was to assess the diagnostic image quality of ultra-low-dose chest computed tomography (ULD-CT) obtained with a radiation dose comparable to chest radiography and reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) in comparison with standard dose diagnostic CT (SDD-CT) or low-dose diagnostic CT (LDD-CT) reconstructed with FBP alone. Methods: Unenhanced chest CT images of 42 patients acquired with ULD-CT were compared with images obtained with SDD-CT or LDD-CT in the same examination. Noise measurements and image quality, based on conspicuity of chest lesions on all CT data sets were assessed on a five-point scale. Results: The radiation dose of ULD-CT was 0.16 ± 0.006mSv compared with 11.2 ± 2.7mSv for SDD-CT (P < 0.0001) and 2.7 ± 0.9mSv for LDD-CT. Image quality of ULD-CT increased significantly when using MBIR compared with FBP or ASIR (P < 0.001). ULD-CT reconstructed with MBIR enabled to detect as many non-calcified pulmonary nodules as seen on SDD-CT or LDD-CT. However, image quality of ULD-CT was clearly inferior for characterisation of ground glass opacities or emphysema. Conclusion: Model-based iterative reconstruction allows detection of pulmonary nodules with ULD-CT with radiation exposure in the range of a posterior to anterior (PA) and lateral chest X-ray. Key Points : • Radiation dose is a key concern with the increased use of thoracic CT • Ultra-low-dose chest CT approximates the radiation dose of conventional chest radiography • Ultra-low-dose chest CT can be of diagnostic quality • Solid pulmonary nodules are clearly depicted on ultra-low-dose chest C

    Solid Spherical Energy (SSE) CNNs for Efficient 3D Medical Image Analysis

    Get PDF
    Invariance to local rotation, to differentiate from the global rotation of images and objects, is required in various texture analysis problems. It has led to several breakthrough methods such as local binary patterns, maximum response and steerable filterbanks. In particular, textures in medical images often exhibit local structures at arbitrary orientations. Locally Rotation Invariant (LRI) Convolutional Neural Networks (CNN) were recently proposed using 3D steerable filters to combine LRI with Directional Sensitivity (DS). The steerability avoids the expensive cost of convolutions with rotated kernels and comes with a parametric representation that results in a drastic reduction of the number of trainable parameters. Yet, the potential bottleneck (memory and computation) of this approach lies in the necessity to recombine responses for a set of predefined discretized orientations. In this paper, we propose to calculate invariants from the responses to the set of spherical harmonics projected onto 3D kernels in the form of a lightweight Solid Spherical Energy (SSE) CNN. It offers a compromise between the high kernel specificity of the LRI-CNN and a low memory/operations requirement. The computational gain is evaluated on 3D synthetic and pulmonary nodule classification experiments. The performance of the proposed approach is compared with steerable LRI-CNNs and standard 3D CNNs, showing competitive results with the state of the art

    Superparamagnetic nanoparticles – a tool for early diagnostics

    Get PDF
    Nanoparticles show several interesting new physical and biological properties and therefore play an increasing role in pharmaceutics and medicine. For more than 30 years this research field has been developing slowly but steadily from physical and biological interest (bench) to applications in clinics (bedside). However, many of these particles for biomedical applications are still in the pre-clinical or clinical phase. Combined with drugs or genes these nanoparticles may change the viability of or the transcription processes in cells, which make them interesting for the pharmaceutical industry, cell biology and diagnostics. Because most of the application of superparamagnetic nanoparticles as therapeutic tool, like non-viral vector, drug delivery, are still far from clinical use, this review will concentrate on superparamagnetic nanoparticles as versatile agent for early diagnosis, including the use of such particles as contrast agent for MR imaging and as vehicle for the detection of biomarkers

    Molecular imaging by micro-CT: specific E-selectin imaging

    Get PDF
    The primary goal of this study was to design a fluorescent E-selectin-targeted iodine-containing liposome for specific E-selectin imaging with the use of micro-CT. The secondary goal was to correlate the results of micro-CT imaging with other imaging techniques with cellular resolution, i.e., confocal and intravital microscopy. E-selectin-targeted liposomes were tested on endothelial cells in culture and in vivo in HT-29 tumor-bearing mice (n = 12). The liposomes contained iodine (as micro-CT contrast medium) and fluorophore (as optical contrast medium) for confocal and intravital microscopy. Optical imaging methods were used to confirm at the cellular level, the observations made with micro-CT. An ischemia-reperfusion model was used to trigger neovessel formation for intravital imaging. The E-selectin-targeted liposomes were avidly taken up by activated endothelial cells, whereas nontargeted liposomes were not. Direct binding of the E-selectin-targeted liposomes was proved by intravital microscopy, where bright spots clearly appeared on the activated vessels. Micro-CT imaging also demonstrated accumulation of the targeted lipsomes into subcutaneous tumor by an increase of 32 ± 8HU. Hence, internalization by activated endothelial cells was rapid and mediated by E-selectin. We conclude that micro-CT associated with specific molecular contrast agent is able to detect specific molecular markers on activated vessel walls in viv

    In vivo labelling of resting monocytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium

    Get PDF
    Aims To evaluate the feasibility of loading resting monocytes/macrophages by intravenous (i.v.) injection of fluorescent iron oxide nanoparticles prior to injury and tracking of these cells in the very same animal to myocardial infarction (MI) by magnetic resonance imaging (MRI) and optical imaging. Methods and results Rats were injected with fluorescent iron oxide nanoparticles (10 mg/kg) (n = 15) prior to injury. After disappearance of the nanoparticles from the blood, MI was induced. Monocytes/macrophages were then tracked in the very same animal by MRI and optical imaging. Control groups were (i) non-injected animals (n = 15), (ii) injected animals associated with a sham operation (n = 8), and (iii) animals treated with an anti-inflammatory agent (n = 6). The presence of iron-loaded cells can be detected by MRI in vivo in the infarcted myocardium. Here, we showed that the detection of inflammatory cells in vivo correlated well with ex vivo imaging (MRI and reflectance fluorescence) and histology. We also showed that the method is robust enough to depict changes in the inflammatory response. Conclusion This study demonstrates that resting monocytes/macrophages can be loaded in vivo by a simple i.v. injection of fluorescent superparamagnetic iron oxide nanoparticles prior to injury and then tracked, in the same animal, in a model of ischaemia-reperfusion leading to myocardial infarct. Although previous studies of macrophages infiltration following MI have labelled the macrophages after injury, this study, for the first time, has pre-load the resting monocytes with fluorescent iron oxide nanoparticle

    Experimental noninferiority trial of synthetic small-caliber biodegradable versus stable vascular grafts

    Get PDF
    ObjectiveLong-term evolution of polycaprolactone vascular prostheses has been investigated recently. The goal of this study was to evidence a noninferiority of such grafts compared with expanded polytetrafluoroethylene (ePTFE) implants in an aortic replacement model in the rat.MethodsFourteen anesthetized Sprague-Dawley rats received an infrarenal aortic graft (biodegradable, n = 8; expanded polytetrafluoroethylene, n = 6) replacement (end to end; inner diameter, 2 mm). Biodegradable grafts (polycaprolactone) were produced by random micro-/nanofiber electrospinning. After a median survival of 16.5 months, in vivo ultrasonography and angiography as well as postexplantation microcomputed tomography, histomorphometry, immunohistochemistry, and scanning electron microscopy were performed.ResultsPatency was 100% for polycaprolactone and 67% for ePTFE. No aneurysmal dilatation or stenoses were found in either group. Compliance was significantly higher for polycaprolactone compared with ePTFE (8.2 ± 1.0%/100 mm Hg vs 5.7 ± 0.7%/100 mm Hg; P < .01), but markedly reduced compared with adjacent native aortas and the control group. Histologically, low cellular in-growth was found in ePTFE whereas polycaprolactone showed significantly greater homogenous cellularity, producing an autologous extracellular matrix (10.8% ± 4.0% vs 32.1% ± 9.2%, P < .0001). Morphometry showed 100% neo-endothelialization for both grafts with a totally confluent endothelial coverage for polycaprolactone grafts by scanning electron microscope. More intimal hyperplasia was found in ePTFE compared with polycaprolactone grafts. Calcification was higher in ePTFE than in polycaprolactone grafts (15.8% vs 7.0%, P = .04) and was absent in controls.ConclusionsOutcomes of synthetic biodegradable nanofiber polycaprolactone grafts are not inferior compared with the clinically used expanded polytetrafluoroethylene grafts after long-term implantation in the rat aorta. Moreover, these implants show better patency, compliance, endothelialization, and cell in-growth, and less intimal hyperplasia and calcification than their counterparts

    Urinary stone detection and characterisation with dual-energy CT urography after furosemide intravenous injection: preliminary results

    Get PDF
    Objectives: To investigate the added advantage of IV furosemide injection and the subsequent urine dilution in the detection of urinary calculi in the excretory phase of dual-source dual-energy (DE) computed tomography (CT) urography, and to investigate the feasibility of characterising the calculi through diluted urine. Methods: Twenty-three urinary calculi were detected in 116 patients who underwent DECT urography for macroscopic haematuria with a split bolus two- or three-acquisition protocol, including a true unenhanced series and at least a mixed nephrographic excretory phase. Virtual unenhanced images were reconstructed from contrast-enhanced DE data. Calculi were recorded on all series and characterised based on their X-ray absorption characteristics at 100kVp and 140kVp in both true unenhanced and nephrographic excretory phase series. Results: All calculi with a diameter more than 2mm were detected in the virtual unenhanced phase and in the nephrographic excretory phase. Thirteen of these calculi could be characterised in the true unenhanced phase and in the mixed nephrographic excretory phase. The results were strictly identical for both phases, six of them being recognised as non-uric acid calculi and seven as uric acid calculi. Conclusions: Mixed nephrographic excretory phase DECT after furosemide administration allows both detection and characterisation of clinically significant calculi, through the diluted urine. Key points: • Urinary tract stones can be detected on excretory phase through diluted urine. • Urinary tract stone characterisation with dual-energy CT (DECT) is possible through diluted urine. • A dual energy split-bolus CT urography simultaneously enables urinary stone detection and characterisation

    Gastrointestinal relapse of multiple myeloma and sustained response to lenalidomide: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Gastrointestinal relapse in patients with multiple myeloma is very rare and, when reported, always associated with a poor prognosis.</p> <p>Case presentation</p> <p>We describe the case of a 71-year-old Caucasian man who presented with life-threatening hematemesis and melena due to a digestive relapse of his multiple myeloma. Despite the active hemorrhage, we initiated a third-line treatment with lenalidomide. The response was spectacular and long-lasting.</p> <p>Conclusions</p> <p>Clinicians must consider digestive tract involvement in myeloma patients presenting with a gastrointestinal hemorrhage. Furthermore, myeloma patients do benefit from novel oral drugs, even when they are critically ill.</p

    Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis.

    Get PDF
    The microRNA 21 (miR-21) is upregulated in almost all known human cancers and is considered a highly potent oncogene and potential therapeutic target for cancer treatment. In the liver, miR-21 was reported to promote hepatic steatosis and inflammation, but whether miR-21 also drives hepatocarcinogenesis remains poorly investigated in vivo. Here we show using both carcinogen (Diethylnitrosamine, DEN) or genetically (PTEN deficiency)-induced mouse models of hepatocellular carcinoma (HCC), total or hepatocyte-specific genetic deletion of this microRNA fosters HCC development-contrasting the expected oncogenic role of miR-21. Gene and protein expression analyses of mouse liver tissues further indicate that total or hepatocyte-specific miR-21 deficiency is associated with an increased expression of oncogenes such as Cdc25a, subtle deregulations of the MAPK, HiPPO, and STAT3 signaling pathways, as well as alterations of the inflammatory/immune anti-tumoral responses in the liver. Together, our data show that miR-21 deficiency promotes a pro-tumoral microenvironment, which over time fosters HCC development via pleiotropic and complex mechanisms. These results question the current dogma of miR-21 being a potent oncomiR in the liver and call for cautiousness when considering miR-21 inhibition for therapeutic purposes in HCC
    corecore