2,959 research outputs found

    Strong-driving-assisted multipartite entanglement in cavity QED

    Get PDF
    We propose a method of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. It is shown that, with a judicious choice of the cavity detuning and the applied coherent field detuning, vacuum Rabi coupling produces a large number of important multipartite entangled states. It is even possible to produce entangled states involving different cavity modes. Tuning of parameters also permits us to switch from Jaynes-Cummings to anti-Jaynes-Cummings like interaction.Comment: Last version with minor changes and added references. Accepted for publication in Phys. Rev. Letter

    Business in Nebraska # 278 - November 1967

    Get PDF
    The Nebraska Department of Economic Development (James W. Monroe) After 100 years of growth and prosperity based firmly upon a nearly self-sufficient agricultural economy, why has Nebraska seen fit to depart from its rural image and increase its efforts in the highly competitive business of attracting industry? Business Summary (E. L. Burgess) August\u27s dollar volume of business in Nebraska increased 3.3% from August, 1966 and the physical volume increased 2.7%. The U.S. dollar volume rose 5.3% from August, 1966. The U.S. construction activity index increased over year-ago levels for the first time since May, 1966. Nebraska\u27s construction index, having last shown an increase over year-ago levels in September, 1966, remained down with a 14.3% decline from August, 1966. Life insurance sales (-1.1%) was the only other Nebraska indicator declining from year-ago levels. Review (E. S. Wallace

    Abelian Sandpile Model on the Husimi Lattice of Square Plaquettes

    Full text link
    An Abelian sandpile model is considered on the Husimi lattice of square plaquettes. Exact expressions for the distribution of height probabilities in the Self-Organized Critical state are derived. The two-point correlation function for the sites deep inside the Husimi lattice is calculated exactly.Comment: 12 pages, LaTeX, source files and some additional information available at http://thsun1.jinr.dubna.su/~shcher

    Estimating probabilities of peptide database identifications to LC-FTICR-MS observations

    Get PDF
    BACKGROUND: The field of proteomics involves the characterization of the peptides and proteins expressed in a cell under specific conditions. Proteomics has made rapid advances in recent years following the sequencing of the genomes of an increasing number of organisms. A prominent technology for high throughput proteomics analysis is the use of liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS). Meaningful biological conclusions can best be made when the peptide identities returned by this technique are accompanied by measures of accuracy and confidence. METHODS: After a tryptically digested protein mixture is analyzed by LC-FTICR-MS, the observed masses and normalized elution times of the detected features are statistically matched to the theoretical masses and elution times of known peptides listed in a large database. The probability of matching is estimated for each peptide in the reference database using statistical classification methods assuming bivariate Gaussian probability distributions on the uncertainties in the masses and the normalized elution times. RESULTS: A database of 69,220 features from 32 LC-FTICR-MS analyses of a tryptically digested bovine serum albumin (BSA) sample was matched to a database populated with 97% false positive peptides. The percentage of high confidence identifications was found to be consistent with other database search procedures. BSA database peptides were identified with high confidence on average in 14.1 of the 32 analyses. False positives were identified on average in just 2.7 analyses. CONCLUSION: Using a priori probabilities that contrast peptides from expected and unexpected proteins was shown to perform better in identifying target peptides than using equally likely a priori probabilities. This is because a large percentage of the target peptides were similar to unexpected peptides which were included to be false positives. The use of triplicate analyses with a "2 out of 3" reporting rule was shown to have excellent rejection of false positives

    Preparing encoded states in an oscillator

    Get PDF
    Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these states can be generated by coupling a continuous quantum variable to a single qubit. An ion trap quantum computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states may be generated in an ion trap.Comment: 5 pages, 4 figures, RevTe

    Shortest paths on systems with power-law distributed long-range connections

    Full text link
    We discuss shortest-path lengths ℓ(r)\ell(r) on periodic rings of size L supplemented with an average of pL randomly located long-range links whose lengths are distributed according to P_l \sim l^{-\xpn}. Using rescaling arguments and numerical simulation on systems of up to 10710^7 sites, we show that a characteristic length ξ\xi exists such that ℓ(r)∼r\ell(r) \sim r for r>ξr>\xi. For small p we find that the shortest-path length satisfies the scaling relation \ell(r,\xpn,p)/\xi = f(\xpn,r/\xi). Three regions with different asymptotic behaviors are found, respectively: a) \xpn>2 where θs=1\theta_s=1, b) 1<\xpn<2 where 0<\theta_s(\xpn)<1/2 and, c) \xpn<1 where ℓ(r)\ell(r) behaves logarithmically, i.e. θs=0\theta_s=0. The characteristic length ξ\xi is of the form ξ∼p−ν\xi \sim p^{-\nu} with \nu=1/(2-\xpn) in region b), but depends on L as well in region c). A directed model of shortest-paths is solved and compared with numerical results.Comment: 10 pages, 10 figures, revtex4. Submitted to PR

    Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber

    Full text link
    Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices
    • …
    corecore