149 research outputs found
Approaches to DIVA vaccination for fish using infectious salmon anaemia and koi herpesvirus disease as models
The expanding aquaculture industry continues to encounter major challenges in the form of highly contagious aquatic viruses. Control and eradication measures targeting the most lethal and economically damaging virus-induced diseases, some of which are notifiable, currently involve ‘stamping out’ policies and surveillance strategies. These approaches to disease control are performed through mass-culling followed by restriction in the movement of fish and fish products, resulting in considerable impacts on trade. Although effective, these expensive, ethically complex measures threaten the sustainability and reputation of the aquatic food sector, and could possibly be reduced by emulating innovative vaccination strategies that have proved pivotal in maintaining the success of the terrestrial livestock industry. DIVA ‘differentiating infected from vaccinated animal’ strategies provide a basis to vaccinate and contain disease outbreaks without compromising ‘disease-free’ status, as antibodies induced specifically to infection can be distinguished from those induced in vaccinated animals. Various approaches were carried out in this study to assess the feasibility of marker/DIVA vaccination for two of the most important disease threats to the global Atlantic salmon and common carp/koi industries, i.e. infectious salmon anaemia (ISA) and koi herpesvirus disease (KHVD), respectively.
Antibody responses of Atlantic salmon (Salmo salar L.), following immunisation with an ISA vaccine, administered with foreign immunogenic marker antigens (tetanus toxoid (TT), fluorescein isothiocyanate (FITC) and keyhole limpet hemocyanin (KLH)) were assessed by antigen-specific enzyme linked immunosorbent assay (ELISA). Although antibodies were induced to some markers, these were unreliable and may have been affected by temperature and smoltification. Detectable antibodies to ISAV antigen were also largely inconsistent despite low serum dilutions of 1/20 being employed for serological analysis. The poor antibody responses of salmon to the inactivated ISA vaccine suggested that DIVA vaccination is not feasible for ISA. A similar approach for KHV, utilising green fluorescent protein (GFP) as the marker, similarly failed to induce sufficiently detectable antibody responses in vaccinated carp (Cyprinus carpio L.). However, as high anti-KHV antibody titres were obtained with an inactivated KHV vaccine (≥1/3200), alternative approaches were carried out to assess the feasibility of DIVA vaccination for carp. Investigations of early KHV pathogenesis in vivo and antigen expression kinetics in vitro (0-10 days post infection (dpi)) provided valuable data for the diagnostics necessary for DIVA surveillance strategies.
Following viral infection, molecular methods were shown to be the most effective approach for early detection of KHV infected fish prior to sero-conversion, during which time antibodies are not detectable. An experimental immersion challenge with KHV, however, revealed complications in molecular detection during early infection. The KHV DNA was detected in external biopsies of skin and gills, but also internally in gut and peripheral blood leukocytes ≤ 6 hours post infection (hpi), suggesting rapid virus uptake by the host. The gills and gut appeared to be possible portals of entry, supported by detection of DNA in cells by in situ hybridisation (ISH). However, many false negative results using organ biopsies occurred during the first 4 dpi. The gills were the most reliable lethal biopsy for KHV detection by various polymerase chain reaction (PCR) assays, with a PCR targeting a glycoprotein-gene (ORF56) and a real-time PCR assay being the most sensitive of the 7 methods investigated. Importantly, non-lethal mucus samples reduced the number of false negative results obtained by all KHV PCR assays during the earliest infection stages with large levels of viral DNA being detected in mucus (up to 80,000 KHV DNA genomic equivalents 200 μL-1). KHV DNA was consistently detected in the mucus as a consequence of virus being shed from the skin.
Determining the expression kinetics of different viral structural proteins can be useful for DIVA serological tests. Analysis of KHV antigen expression in tissues by immunohistochemistry and indirect fluorescent antibody test was inconclusive, therefore 2 novel semi-quantitative immunofluorescence techniques were developed for determining KHV antigen expression kinetics in susceptible cell lines. During the course of KHV infection in vitro, a greater abundance of capsid antigen was produced in infected cells compared to a glycoprotein antigen (ORF56), as determined by detection with antigen-specific monoclonal antibodies (MAbs). The capsid antigen was characterised as a ~100 kDa protein by SDS-PAGE and identified as a product of KHV ORF84 by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF/TOF MS). This antigen was subsequently detected in the serum of >25% of KHV infected/exposed carp (6/17), as well as in carp vaccinated with a live attenuated vaccine (3/4), but not with an inactivated vaccine (0/7), by Western blot making it a potential DIVA target for an inactivated vaccine.
Attempts were made to improve the sensitivity of KHV serological testing by taking advantage of recombinant proteins specific for KHV (CyHV-3), rORF62 and rORF68 and eliminating any interference by cross-reacting antibodies to carp pox (CyHV-1). These proteins successfully reacted with anti-KHV antibodies. The feasibility of DIVA strategies for KHVD was determined using these recombinant antigens to coat ELISA plates. Differential antibody responses were detected from carp sera to an internal virus tegument protein (rORF62) and external region of a transmembrane protein (rORF68). Fish vaccinated with an inactivated vaccine produced significantly lower antibody responses to rORF62 than to rORF68, whereas infected, exposed and live attenuated vaccinated fish recognised both proteins allowing differentiation between vaccinated and infected carp. However, the sensitivity of the assay was limited, possibly by high levels of natural antibodies detected at the relatively low serum dilutions (1/200) used. As the capsid antigen (ORF84) and tegument protein (ORF62) are derived from internal KHV structural proteins, they induce non-neutralising antibodies, which may be useful for DIVA strategies. Such antibodies are longer lasting than neutralising antibodies and often comprise the majority of fish anti-viral antibodies. This was noted in a fish surviving experimental challenge, which had an antibody titre of 1/10,000, but neutralising titre of 1/45. Such antigens may therefore hold potential for developing effective serological diagnostic tests for KHV and provide the potential for DIVA strategies against KHVD. Natural antibodies will, however, continue to present a challenge to the development of sensitive and reliable KHV serological tests, and hence the application of DIVA strategies
Stress in silicon interlayers at the SiO(x)/Ge interface
Materials such as germanium display an advantage relative to silicon in terms of carrier mobilities but form poor quality interfaces to oxides. By sandwiching silicon layers between a germanium substrate and the oxide, advantages of the silicon oxide/silicon (SiO(x)/Si) interface can be retained combined with the advantage of a high mobility germanium substrate. Using density functional theory calculations, stress within the silicon interlayer is quantified for different interlayer thicknesses revealing that for up to three silicon layers, the stress in the interlayer is compensated for by the energy gained by forming silicon-oxygen bonds at the interface. (c) 2007 American Institute of Physics. (DOI:10.1063/1.2713122
Histological and histochemical characterisation of glands associated with the feeding appendages of Argulus foliaceus (Linnaeus, 1758)
Argulus foliaceus (Linnaeus, 1758) is a member of the branchiuran family Argulidae, a group comprising parasitic “fish lice”. A. foliaceus is distributed worldwide and causes major economic impacts for cultured freshwater fish globally. The work described in this study was undertaken with the objective of identifying, describing and characterising glands associated with feeding in A. foliaceus. From structural and ultrastructural microscopic studies of A. foliaceus, three types of gland were determined to be associated with the pre-oral spine and mouth tube and were suggested to be involved in feeding activities. Two of these glands, the labial glands and the proboscis glands, appeared to secrete their products via the mouth tube and a third, the spinal gland, was connected directly to the pre-oral spine. The current study confirmed that the pre-oral spine delivers active secretions from the spinal gland, which may aid in immunomodulation, while the tubular labial spines and proboscis glands openings within the mouth tube may serve to enhance the feeding process by delivering salivary components to aid pre-digestion and immune-modulate the host. The suggested functions are supported by histological and histochemical staining, coupled with fluorescent lectin-binding assays, which enabled characterisation of the carbohydrate moieties associated with these glandular tissues
Construction of a Vibrio alginolyticus hopPmaJ (hop) mutant and evaluation of its potential as a live attenuated vaccine in orange-spotted grouper (Epinephelus coioides)
Vibrio alginolyticus, a bacterial pathogen in fish and humans, expresses a type III secretion system (T3SS) that is critical for pathogen virulence and disease development. However, little is known about the associated effectors (T3SEs) and their physiological role. In this study, the T3SE gene hopPmaJ (hop) was cloned from V. alginolyticus wild-type strain HY9901 and the mutant strain HY9901Δhop was constructed by the in-frame deletion method. The results showed that the deduced amino acid sequence of V. alginolyticus HopPmaJ shared 78–98% homology with other Vibrio spp. In addition, the HY9901Δhop mutant showed an attenuated swarming phenotype and a 2600-fold decrease in the virulence to grouper. However, the HY9901Δhop mutant showed no difference in morphology, growth, biofilm formation and ECPase activity. Finally, grouper vaccinated via intraperitoneal (IP) injection with HY9901Δhop induced a high antibody titer with a relative percent survival (RPS) value of 84% after challenging with the wild-type HY9901. Real-time PCR assays showed that vaccination with HY9901Δhop enhanced the expression of immune-related genes, including MHC-Iα, MHC-IIα, IgM, and IL-1β after vaccination, indicating that it is able to induce humoral and cell-mediated immune response in grouper. These results demonstrate that the HY9901Δhop mutant could be used as an effective live vaccine to combat V. alginolyticus in grouper
Identification of proteins from the secretory/excretory products (SEPs) of the branchiuran ectoparasite Argulus foliaceus (Linnaeus, 1758) reveals unique secreted proteins amongst haematophagous ecdysozoa
Background It is hypothesised that being a blood-feeding ectoparasite, Argulus foliaceus (Linnaeus, 1758), uses similar mechanisms for digestion and host immune evasion to those used by other haematophagous ecdysozoa, including caligid copepods (e.g. sea louse). We recently described and characterised glands associated with the feeding appendages of A. foliaceus using histological techniques. The work described in the present study is the first undertaken with the objective of identifying and partially characterising the components secreted from these glands using a proteomic approach. Methods Argulus foliaceus parasites were sampled from the skin of rainbow trout (Oncorhynchus mykiss), from Loch Fad on the Isle of Bute, Scotland, UK. The proteins from A. foliaceus secretory/excretory products (SEPs) were collected from the supernatant of artificial freshwater conditioned with active adult parasites (n = 5–9 per ml; n = 560 total). Proteins within the SEPs were identified and characterised using LC-ESI-MS/MS analysis. Data are available via ProteomeXchange with identifier PXD016226. Results Data mining of a protein database translated from an A. foliaceus dataset using ProteinScape allowed identification of 27 predicted protein sequences from the A. foliaceus SEPs, each protein matching the criteria of 2 peptides with at least 4 contiguous amino acids. Nine proteins had no matching sequence through OmicsBox (Blast2GO) analysis searches suggesting that Argulus spp. may additionally have unique proteins present in their SEPs. SignalP 5.0 software, identified 13 proteins with a signal sequence suggestive of signal peptides and supportive of secreted proteins being identified. Notably, the functional characteristics of identified A. foliaceus proteins/domains have also been described from the salivary glands and saliva of other blood-feeding arthropods such as ticks. Identified proteins included: transporters, peroxidases, metalloproteases, proteases and serine protease inhibitors which are known to play roles in parasite immune evasion/induction (e.g. astacin), immunomodulation (e.g. serpin) and digestion (e.g. trypsin). Conclusions To our knowledge, the present study represents the first proteomic analysis undertaken for SEPs from any branchiuran fish louse. Here we reveal possible functional roles of A. foliaceus SEPs in digestion and immunomodulation, with a number of protein families shared with other haematophagous ectoparasites. A number of apparently unique secreted proteins were identified compared to other haematophagous ecdysozoa
Salmon immunological defence and interplay with the modulatory capabilities of its ectoparasite Lepeophtheirus salmonis
The salmon louse Lepeophtheirus salmonis (Lsal ) is an ectoparasitic copepod that exerts immunomodulatory and physiological effects on its host Atlantic salmon. Over 30 years of research on louse biology, control, host responses and the host‐parasite relationship has provided a plethora of information on the intricacies of host resistance and parasite adaptation. Atlantic salmon exhibit temporal and spatial impairment of the immune system and wound healing ability during infection. This immunosuppression may render Atlantic salmon less tolerant to stress and other confounders associated with current management strategies. Contrasting susceptibility of salmonid hosts exists and early pro‐inflammatory Th1 type responses are associated with resistance. Rapid cellular responses to larvae appear to tip the balance of the host‐parasite relationship in favour of the host, preventing severe immune‐physiological impacts of the more invasive adults. Immunological, transcriptomic, genomic and proteomic evidence suggests pathological impacts occur in susceptible hosts through modulation of host immunity and physiology via pharmacologically active molecules. Co‐evolutionary and farming selection pressures may have incurred preference of Atlantic salmon as a host for Lsal reflected in their interactome. Here we review host‐parasite interactions at the primary attachment/feeding site, and the complex life‐stage dependent molecular mechanisms employed to subvert host physiology and immune responses
Efficacy of an inactivated whole-cell injection vaccine for nile tilapia, Oreochromis niloticus (L), against multiple isolates of Francisella noatunensis subsp. orientalis from diverse geographical regions
Francisellosis, induced by Francisella noatunensis subsp. orientalis (Fno), is an emerging bacterial disease representing a major threat to the global tilapia industry. There are no commercialised vaccines presently available against francisellosis for use in farmed tilapia, and the only available therapeutic practices used in the field are either the prolonged use of antibiotics or increasing water temperature. Recently, an autogenous whole cell-adjuvanted injectable vaccine was developed that gave 100% relative percent survival (RPS) in tilapia challenged with a homologous isolate of Fno. In this study, we evaluated the efficacy of this vaccine against challenge with heterologous Fno isolates. Healthy Nile tilapia, Oreochromis niloticus (∼15 g) were injected intraperitoneally (i.p.) with the vaccine, adjuvant-alone or phosphate buffer saline (PBS) followed by an i.p. challenge with three Fno isolates from geographically distinct locations. The vaccine provided significant protection in all groups of vaccinated tilapia, with a significantly higher RPS of 82.3% obtained against homologous challenge, compared to 69.8% and 65.9% with the heterologous challenges. Protection correlated with significantly higher specific antibody responses, and western blot analysis demonstrated cross-isolate antigenicity with fish sera post-vaccination and post-challenge. Moreover, a significantly lower bacterial burden was detected by qPCR in conjunction with significantly greater expression of IgM, IL-1 β, TNF-α and MHCII, 72 h post-vaccination (hpv) in spleen samples from vaccinated tilapia compared to fish injected with adjuvant-alone and PBS. The Fno vaccine described in this study may provide a starting point for development a broad-spectrum highly protective vaccine against francisellosis in tilapia
Methacarn preserves mucus integrity and improves visualization of amoebae in gills of Atlantic salmon (Salmo salar L.)
Two aqueous fixation methods (modified Davidson's solution and modified Davidson's solution with 2% (w/v) Alcian blue) were compared against two non‐aqueous fixation methods (methacarn solution and methacarn solution with 2% (w/v) Alcian blue) along with the standard buffered formalin fixation method to (a) improve preservation of the mucous coat on Atlantic salmon, Salmo salar L., gills and (b) to examine the interaction between the amoebae and mucus on the gill during an infection with amoebic gill disease. Aqueous fixatives demonstrated excellent cytological preservation but failed to deliver the preservation of the mucus when compared to the non‐aqueous‐based fixatives; qualitative and semi‐quantitative analysis revealed a greater preservation of the gill mucus using the non‐aqueous methacarn solution. A combination of this fixation method and an Alcian blue/Periodic acid–Schiff staining was tested in gills of Atlantic salmon infected with amoebic gill disease; lectin labelling was also used to confirm the mucus preservation in the methacarn‐fixed tissue. Amoebae were observed closely associated with the mucus demonstrating that the techniques employed for preservation of the mucous coat can indeed avoid the loss of potential mucus‐embedded parasites, thus providing a better understanding of the relationship between the mucus and parasite
A systems view of epithelial–mesenchymal transition signaling states
Epithelial–mesenchymal transition (EMT) is an important contributor to the invasion and metastasis of epithelial-derived cancers. While considerable effort has focused in the regulators involved in the transition process, we have focused on consequences of EMT to prosurvival signaling. Changes in distinct metastable and ‘epigentically-fixed’ EMT states were measured by correlation of protein, phosphoprotein, phosphopeptide and RNA transcript abundance. The assembly of 1167 modulated components into functional systems or machines simplified biological understanding and increased prediction confidence highlighting four functional groups: cell adhesion and migration, metabolism, transcription nodes and proliferation/survival networks. A coordinate metabolic reduction in a cluster of 17 free-radical stress pathway components was observed and correlated with reduced glycolytic and increased oxidative phosphorylation enzyme capacity, consistent with reduced cell cycling and reduced need for macromolecular biosynthesis in the mesenchymal state. An attenuation of EGFR autophosphorylation and a switch from autocrine to paracrine-competent EGFR signaling was implicated in the enablement of tumor cell chemotaxis. A similar attenuation of IGF1R, MET and RON signaling with EMT was observed. In contrast, EMT increased prosurvival autocrine IL11/IL6-JAK2-STAT signaling, autocrine fibronectin-integrin α5β1 activation, autocrine Axl/Tyro3/PDGFR/FGFR RTK signaling and autocrine TGFβR signaling. A relatively uniform loss of polarity and cell–cell junction linkages to actin cytoskeleton and intermediate filaments was measured at a systems level. A more heterogeneous gain of ECM remodeling and associated with invasion and migration was observed. Correlation to stem cell, EMT, invasion and metastasis datasets revealed the greatest similarity with normal and cancerous breast stem cell populations, CD49f(hi)/EpCAM(-/lo) and CD44(hi)/CD24(lo), respectively. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10585-010-9367-3) contains supplementary material, which is available to authorized users
A T3SS Regulator Mutant of Vibrio alginolyticus Affects Antibiotic Susceptibilities and Provides Significant Protection to Danio rerio as a Live Attenuated Vaccine
Vibrio alginolyticus is a major cause of Vibriosis in farmed marine aquatic animals and has caused large economic losses to the Asian aquaculture industry in recent years. Therefore, it is necessary to control V. alginolyticus effectively. The virulence mechanism of V. alginolyticus, the Type III secretion system (T3SS), is closely related to its pathogenicity. In this study, the T3SS gene tyeA was cloned from V. alginolyticus wild-type strain HY9901 and the results showed that the deduced amino acid sequence of V. alginolyticus tyeA shared 75–83% homology with other Vibrio spp. The mutant strain HY9901ΔtyeA was constructed by Overlap-PCR and homologous recombination techniques. The HY9901ΔtyeA mutant exhibited an attenuated swarming phenotype and an ~40-fold reduction in virulence to zebrafish. However, the HY9901ΔtyeA mutant showed no difference in growth, biofilm formation and ECPase activity. Antibiotic susceptibility test was observed that wild and mutant strains were extremely susceptible to Amikacin, Minocycline, Gentamicin, Cefperazone; and resistant to oxacillin, clindamycin, ceftazidime. In contrast wild strains are sensitive to tetracycline, chloramphenicol, kanamycin, doxycycline, while mutant strains are resistant to them. qRT-PCR was employed to analyze the transcription levels of T3SS-related genes, the results showed that compared with HY9901 wild type, ΔtyeA had increased expression of vscL, vscK, vscO, vopS, vopN, vscN, and hop. Following vaccination with the mutant strain, zebrafish had significantly higher survival than controls following infection with the wild-type HY9901 (71.2% relative percent survival; RPS). Analysis of immune gene expression by qPCR showed that vaccination with HY9901ΔtyeA increased the expression of IgM, IL-1β, IL-6, and TNF-α in zebrafish. This study provides evidence of protective efficacy of a live attenuated vaccine targeting the T3SS of V. alginolyticus which may be facilitated by up-regulated pro-inflammatory and immunoglobulin-related genes
- …