591 research outputs found

    X.509 certificate error testing

    Get PDF
    X.509 Certificates are used by a wide range of technologies to verify identities, while the SSL protocol is used to provide a secure encrypted tunnel through which data can be sent over a public network. Combined both of these technologies provides the basis of the public key infrastructure (PKI). While the concept of PKI is a good idea, the different implementation of the technologies in different operating system and clients often lead to weaknesses. This paper proposes a methodology to automate the testing of SSL clients by generating both bogus and malformed certificates in order to evaluate the client’s response and identify potential threats to network infrastructures

    Trust models in wireless sensor networks: A survey

    Full text link
    This paper introduces the security and trust concepts in wireless sensor networks and explains the difference between them, stating that even though both terms are used interchangeably when defining a secure system, they are not the same. The difference between reputation and trust is also explained, highlighting that reputation partially affects trust. The methodologies used to model trust and their references are presented. The factors affecting trust updating are summarised and some examples of the systems in which these factors have been implemented are given. The survey states that, even though researchers have started to explore the issue of trust in wireless sensor networks, they are still examining the trust associated with routing messages between nodes (binary events). However, wireless sensor networks are mainly deployed to monitor events and report data, both continuous and discrete. This leads to the development of new trust models addressing the continuous data issue and also to combine the data trust and the communication trust to infer the total trust. © 2010 Springer-Verlag Berlin Heidelberg

    GTRSSN: Gaussian trust and reputation system for sensor networks

    Full text link
    This paper introduces a new Gaussian trust and reputation system for wireless sensor networks based on sensed continuous events to address security issues and to deal with malicious and unreliable nodes. It is representing a new approach of calculating trust between sensor nodes based on their sensed data and the reported data from surrounding nodes. It is addressing the trust issue from a continuous sensed data which is different from all other approaches which address the issue from communications and binary point of view. © Springer Science+Business Media B.V. 2008

    Computer aided evaluation of learning management systems

    Get PDF
    AbstractLearning management systems (LMSs) are software applications that comprise a suite of tools for learning and online teaching. There are many commercial and open source LMSs that can be found on the web. Because there are many LMS systems in the market place, one of the problems facing a user is how to choose a system that can meet the requirements. This paper is about a computer program developed at the Near East University for the evaluation of learning management systems. The developed system, named EW-LMS, is web-based and can easily be used over the internet anywhere and at any time. The system provides a web-based decision support system that may help administrators and instructors to choose the most suitable LMS system for their needs and requirements. This evaluation system was designed using the MS-Visual Studio .NET together with a MS-SQL Server based database

    Analysis of seawater pollution factors in the port of Aqaba/ Jordan : from a sustainability perspective: challenges and solutions

    Get PDF

    Bayesian fusion algorithm for inferring trust in wireless sensor networks

    Full text link
    This paper introduces a new Bayesian fusion algorithm to combine more than one trust component (data trust and communication trust) to infer the overall trust between nodes. This research work proposes that one trust component is not enough when deciding on whether or not to trust a specific node in a wireless sensor network. This paper discusses and analyses the results from the communication trust component (binary) and the data trust component (continuous) and proves that either component by itself, can mislead the network and eventually cause a total breakdown of the network. As a result of this, new algorithms are needed to combine more than one trust component to infer the overall trust. The proposed algorithm is simple and generic as it allows trust components to be added and deleted easily. Simulation results demonstrate that a node is highly trustworthy provided that both trust components simultaneously confirm its trustworthiness and conversely, a node is highly untrustworthy if its untrustworthiness is asserted by both components. © 2010 ACADEMY PUBLISHER

    Modelling Trust In Wireless Sensor Networks from the Sensor Reliability Prospective

    Full text link
    This paper surveys the state of the art trust-based systems in Wireless Sensor Networks (WSN); it highlights the difference between Mobile ad hoc networks (MANET) and WSN and based on this observed difference (monitoring events and reporting data) a new trust model is introduced, which takes sensor reliability as a component of trust. A new definition of trust is created based on the newly introduced component of trust (sensor data) and an extension of node misbehaviour classification is also presented based on this new component of trust

    Can we trust trusted nodes in wireless sensor networks?

    Full text link
    In this paper we extend our previously designed trust model in wireless sensor networks to include both; communication trust and data trust. Trust management in wireless sensor networks is predominantly based on routing messages; whether the communication has happened or not (successful and unsuccessful transactions). The uniqueness of sensing data in wireless sensor networks introduces new challenges in calculating trust between nodes (data trust). If the overall trust is based on just the communication trust, it might mislead the network, that is; untrustworthy nodes in terms of sensed data can be classified as trusted nodes due to their communication capabilities. Hence we need to develop new trust models to address the issue of the actual sensed data. Here we are comparing the two trust models and proving that one model by itself is not enough to decide on the trustworthiness of a node, so new techniques are required to combine both data trust and communication trust. ©2008 IEEE

    RBATMWSN: Recursive Bayesian approach to trust management in wireless sensor networks

    Full text link
    This paper introduces a new trust model and a reputation system for wireless sensor networks based on a sensed continuous data. It establishes the continuous version of the beta reputation system introduced in [1] and applied to binary events and presents a new Gaussian Reputation System for Sensor Networks (GRSSN) . We introduce a theoretically sound Bayesian probabilistic approach for mixing second-hand information from neighbouring nodes with directly observed information. ©2007 IEEE

    Enhanced Position Verification for VANETs using Subjective Logic

    Full text link
    The integrity of messages in vehicular ad-hoc networks has been extensively studied by the research community, resulting in the IEEE~1609.2 standard, which provides typical integrity guarantees. However, the correctness of message contents is still one of the main challenges of applying dependable and secure vehicular ad-hoc networks. One important use case is the validity of position information contained in messages: position verification mechanisms have been proposed in the literature to provide this functionality. A more general approach to validate such information is by applying misbehavior detection mechanisms. In this paper, we consider misbehavior detection by enhancing two position verification mechanisms and fusing their results in a generalized framework using subjective logic. We conduct extensive simulations using VEINS to study the impact of traffic density, as well as several types of attackers and fractions of attackers on our mechanisms. The obtained results show the proposed framework can validate position information as effectively as existing approaches in the literature, without tailoring the framework specifically for this use case.Comment: 7 pages, 18 figures, corrected version of a paper submitted to 2016 IEEE 84th Vehicular Technology Conference (VTC2016-Fall): revised the way an opinion is created with eART, and re-did the experiments (uploaded here as correction in agreement with TPC Chairs
    • …
    corecore