
X.509 certificate error testing
David McLuskie
Xavier Bellekens

© ACM 2018. This is the author's version of the
work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record
was published in Proceedings of the 13th
International Conference on Availability, Reliability
and Security (ARES 2018),
http://dx.doi.org/10.1145/3230833.3232820

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Abertay Research Portal

https://core.ac.uk/display/228178426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/3230833.3232820

X.509 Certificate Error Testing

D.McLuskie
Abertay	University	

Dundee,	UK
d.mcluskie@abertay.ac.uk

X.Belleken
Abertay	University	

Dundee,	UK
x.belleken@abertay.ac.uk

ABSTRACT	
X.509	Certificates	are	used	by	a	wide	range	of	technologies	to	
verify	 identities,	while	 the	SSL	protocol	 is	used	 to	provide	a	
secure	encrypted	tunnel	through	which	data	can	be	sent	over	a	
public	network.	Combined	both	of	these	technologies	provides	
the	 basis	 of	 the	 public	 key	 infrastructure	 (PKI).	 While	 the	
concept	of	PKI	is	a	good	idea,	the	different	implementation	of	
the	technologies	in	different	operating	system	and	clients	often	
lead	 to	 weaknesses.	 This	 paper	 proposes	 a	 methodology	 to	
automate	the	testing	of	SSL	clients	by	generating		both	bogus	
and	 malformed	 certificates	 in	 order	 to	 evaluate	 the	 client’s
response	 and	 identify	 potential	 threats	 to	 network	
infrastructures.	1

CCS	CONCEPTS	
• Computer	systems	organization	→	Security	and	Privacy;	
Systems	Security;	Network	Security;	

KEYWORDS	
X.509,	SSL,	PKI,	Certificates,	Certificate	Authority	

1	 INTRODUCTION	
Certificates	 play	 an	 important	 part	 in	 validating	 the	
authenticity	of	 the	server	that	a	client	 is	connecting	to,	while	
the	Secure	Socket	Layer	(SSL)	protocol	 is	used	to	provide	an	
encrypted	 tunnel	 through	which	 traffic	 can	be	 securely	 sent.	
Together,	 certificates	 and	 the	 SSL	 protocol	 provide	 the	
cornerstone	upon	which	PKI	is	built	[1].			

To	verify	a	server,	a	certificate	authority	(CA)	like	Godaddy	
or	 VeriSign	 can	 be	 used	 to	 sign	 a	 certificate,	 thus	 leaving	 a	
signature	 on	 the	 signed	 certificate	 by	 the	 CA.	When	a	 client	
wants	to	verify	that	a	server’s	certificate	is	valid	the	signature	

Permission	to	make	digital	or	hard	copies	of	all	or	part	of	this	work	for	personal	
or	classroom	use	is	granted	without	fee	provided	that	copies	are	not	made	or	
distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	
and	the	full	citation	on	the	first	page.	Copyrights	for	components	of	this	work	
owned	by	others	than	ACM	must	be	honored.	Abstracting	with	credit	is	permitted.	
To	 copy	otherwise,	 or	 republish,	 to	post	on	 servers	or	 to	 redistribute	 to	 lists,	
requires	 prior	 specific	 permission	 and/or	 a	 fee.	 Request	 permissions	 from	
Permissions@acm.org
	ARES	2018,	August	27–30,	2018,	Hamburg,	Germany		
©	2018	Association	for	Computing	Machinery.	
ACM	ISBN	978-1-4503-6448-5/18/08…$15.00		
https://doi.org/10.1145/3230833.3232820	

of	the	CA	is	examined.	If	the	signature	is	determined	to	be	valid,	
then	the	server’s	certificate	is	deemed	to	be	valid	as	well.	

In	a	recent	Apple	SSL	security	bug	it	was	discovered	that	
an	invalid	X.509	certificate	present	on	a	server	allowed	Apple	
clients	to	access	the	server		as	if	the	certificate	was	valid		[2].	
However,	when		using	an	alternative	client	an	error	screen	was	
returned	to	the	client	indicating	the	invalidity	of	the	certificate,	
which	is	the	expected	result.		

This	Apple	bug	highlights	one	of	the	key	problems	of	the	
SSL	protocol	in	that	the	developers	are	allowed	to	implement	
the	 protocol	 in	 different	 ways	 and	 this	 could	 lead	 to	 the	
protocol	behaving	differently	between	implementations.	While	
the	SSL	protocol	provides	a	 secure	 layer,	 it	 is	critical	 for	 the	
protocol	 to	 be	 implemented	 uniformly	 as	 described	 by	 the	
standard.		
The	contribution	of	this	work	are	as	follows:	

• Reviewing	the	current	state	of	PKI.	
• Presenting	 a	 methodology	 which	 can	 be	 used	 for	

evaluating	weaknesses	in	the	PKI	

The	 remainder	 of	 this	 paper	 is	 organised	 as	 follows,	
Section	 2	 presents	 the	 background	 on	 PKI	 and	 X.509	
certificates	while	also	describing	the	SSL	handshaking	process	
used	 to	 authenticate	 clients.	 Section	 3	 describes	 the	
methodology	that	will	be	used	to	test	 the	SSL	clients	 for	any	
potential	problems,	while	in	Section	4	the	test	results	from	the	
execution	of	the	methodology	are	presented	and	discussed.	The	
paper	ends	with	the	conclusions	and	future	work	in	Section	5.		

2	 BACKGROUND	
The	PKI	is	a	method	of	providing	authentication	and	secure	
communication	over	a	public	network	like	the	Internet.	The	
main	components	of	a	PKI	are	as	follows	[3]:	

ARES’18, August 2018, University of Hamburg, Hamburg Germany
	

2

1. Digital	Certificates
2. Certificate	Authority(CA)

2.1	 Digital	Certificates	
A	server	will	typically	use	an	X.509	digital	certificate	to	
validate	its	identity	to	a	client.	The	validation	of	the	server’s	
identify	is	underpinned	by	getting	a	CA	to	validate	its	identity.	

The	 SSL	 Protocol	 is	 used	 in	 conjunction	 with	 X.509	
certificates	 to	 authenticate	 the	 server	 that	 the	 client	 is	
connecting	to,	along	with	providing	encryption	mechanisms	to	
protect	the	data	flow	between	the	client	and	the	server	[4].	

When	 an	 SSL	 client	 connects	 to	 a	 server	 the	 handshake	
process	shown	in	Figure	1	[5]	is	executed.	When	this	process	
has	completed	the	client	will	have	authenticated	the	server	as	
well	as	negotiated	an	encrypted	tunnel.		

As	shown	in	Figure	1,	 the	process	begins	with	the	client	
connecting	 to	 the	 server	 by	 sending	 a	ClientHello	message.	
This	message	contains	a	list	of	supported	ciphers	supported	by	
the	client	(e.g.	MD5,	SHA1,	etc.)	along	with	a	random	number	
generated	by	the	client.	

The	 second	 step	 in	 the	SSL	protocol	 is	 for	 the	 server	 to	
respond	 to	 the	 client	 with	 its	 own	 message	 called	 the	
ServerHello.	This	message	contains	a	list	of	ciphers	supported	
by	the	server	along	with	a	random	number	generated	by	the	
server.	In	addition	the	Certificate	message	contains	the	server’s	
public	key	and	hostname	which	have	been	digitally	signed	by	a	
CA.	Note	however,	that	it	 is	the	responsibility	of	the	client	to	
authenticate	the	certificate.	

	

Figure	1:	Basic	SSL	Handshake	Exchange	

The	client’s	next	step	is	to	create	the	pre-master	key	which	
will	be	used	to	form	the	session	key	for	encrypting	the	traffic	
between	the	client	and	the	server.	The	pre-master	key	will	be	
encrypted	using	the	server’s	public	key,	which	was	exchanged	
in	the	ServerHello	message.	The	ClientKeyExchange	message	
is	 then	used	to	transmit	the	encrypted	pre-master	key	to	the	
server.		

When	the	ClientKeyExchange	message	is	received	by	the	
server	the	pre-master	key	will	be	decrypted	using	the	server’s	
private	 key.	 Both	 the	 Client	 and	 Server	 will	 now	 be	 able	 to	
derive	the	same	session	key	for	encrypting	the	traffic	by	using	

the	random	numbers	sent	by	the	ClientHello	and	ServerHello	
messages	and	the	pre-master	key.	

The	final	step	in	the	SSL	process	is	for	the	client	and	server	
to	negotiate	the	ciphers	that	are	being	used.	This	is	done	using	
a	final	message	called	the	ChangeCipherSpec.		

Once	 this	 process	 is	 complete	 a	 secure	 communication	
path	between	the	server	and	the	client	will	be	established.	

2.2	 Certificate	Authorities	
When	 PKI	 is	 used	 one	 area	 of	 concern	 that	 needs	 to	 be	
addressed	 is	 how	 servers	 are	 authenticated.	 To	 help	
accomplish	this	a	body	called	a	CA	can	be	used.		

The	 CA	 is	 responsible	 for	 taking	 an	 application	 from	 a	
server	and	verifying	that	they	are	the	legitimate	owner	of	the	
domain	that	they	are	trying	to	authenticate.	For	example,	if	a	
server	 submits	 an	 application	 for	 bank.com	 the	 CA	 will	 be	
responsible	for	verifying	that	the	application	is	from	the	server	
who	 owns	 the	 website	 and	 not	 a	 hacker	 trying	 to	 set	 up	 a	
phishing	website	to	attract	unsuspecting	customers	[4]	
	

2.2.1 Problems with CA
The	idea	of	getting	a	third	party	to	verify	the	ownership	of	a	
website	is	a	sound	idea,	however	it	has	been	proven	that	the	
checks	that	a	CA	performs	to	verify	the	identity	of	a	website	can	
be	circumvented.		

There	have	been	instances	in	the	past	where	a	CA	has	not	
performed	 the	 necessary	 checks	 and	 issued	 certificates	 to	
customers	when	they	should	not	have	[4].	This	behaviour	led	
to	uncertainty	and	lack	of	trust	in	the	PKI	infrastructure	[6]		

In	order	to	gain	a	good	level	of	trust	the	CA	must	offer	a	
robust	 verification	 process	 that	 focuses	 on	 verifying	 the	
credentials	of	the	customer	[7].	

2.3	 X.509	Certificates	
Within	 the	PKI	 there	 is	 a	key	 requirement	 to	verify	 that	 the	
server,	a	client	 is	trying	to	establish	a	secure	communication	
with,	 is	 legitimate.	 The	 mechanism	 through	 which	 this	 is	
achieved	 is	 based	 upon	 X.509	 certificates.	 The	 general	
structure	of	an	X.509v3	certificate	is	shown	in	Figure	2	[8].		

	

Figure	2:	X.509	Certificate	Structure	

X.509 Certificate Error Testing ARES’18, August 2018, University of Hamburg, Hamburg Germany WOODSTOCK’97, July 2016, El Paso, Texas USA
	

 3

2.3.1 ASN Formatting
The	general	format	of	an	X.509	certificate	is	defined	by	using	an	
Abstract	Syntax	Notation	One	(ASN1)	[3],	which	is	an	artificial	
language,	used	for	describing	data	and	data	structures.	

While	the	X.509	certificate	is	used	to	specify	the	format	of	
a	 certificate,	 it	 does	 not	 dictate	 how	 the	 encoding	 is	 being	
achieved.	 This	 means	 that	 one	 implementation	 of	 the	 ASN1	
encoding	rules	can	differ	from	another	[4],	leading	to	potential	
vulnerabilities		in	a	version	of	the	ASN1	rules.	

2.3.2 X.509 Certificate Field Names
This	section	examines	the	structure	of	an	X.509v3	certificate	by	
discussing	 some	 of	 the	 common	 fields	 used	 to	 create	 a	
certificate	as	shown	in	Figure	2.		

The	Common	Name	(CN)	is	the	most	important	field	as	it	
is	 used	 to	 indicate	 the	 name	 of	 the	 website	 that	 is	 being	
connected	 to	 [8].	 If	 the	 certificate	 is	 for	 the	 domain	 name	
corresponding	 to	 www.google.com,	 then	 when	 the	 domain	
name	is	entered	as	a	URL	in	a	web	browser	it	is	expected	that	
both	the	URL	field	in	the	browser	and	in	the	certificate	match.	
If	 the	 names	 are	 different	 then	 a	 warning	 message	 will	 be	
displayed.		

The	 CA	 also	 uses	 this	 field	 to	 verify	 the	 identity	 of	 the	
owner	for	the	website	by	taking	the	URL	specified	in	the	CN	and	
performing	a	DNS lookup.	The	information	specified	in	the	DNS	
lookup	 is	 compared	against	 the	 information	 supplied	 on	 the	
application	to	verify	that	there	are	no	irregularities.	If	all	fields	
match	then	a	certificate	is		issued.	

The	normal	procedure	is	to	just	verify	the	CN,	but	in	cases	
where	a	 company	wants	 to	give	 the	 users	 connecting	 to	 the	
website	a	higher	degree	of	confidentiality,		an	additional	step	
called	the	Extended	validation	check	can	be	provided.		

This	extended	validation	process	 is	used	to	try	and	stop	
hackers	creating	phishing	websites.	For	example,	a	hacker	can	
successfully	register	the	domain	bankofscotland.net.	When	an	
application	 is	 made	 to	 a	 CA	 for	 an	 X.509	 certificate,	 the	
certificate	will	be	granted,	as	the	hacker		is	the	legitimate	owner	
of	the	domain	name.		

The	 extended	 validation	 on	 the	 other	 hand	 takes	 the	
process	a	step	further	by	performing	a	more	in-depth	check	of	
the	domain	by	verifying	that	the	domain	actually	belongs	to	the	
company,	as	well	as	verifying	 that	the	 company	 is	 legitimate	
and	 that	 they	 are	 not	 trying	 to	 impersonate	 another	
organisation.	A	check	will	also	be	made	against	the	content	that	
the	domain	is	serving	to	make	sure	that	it	is	legitimate.		

This	process	is	typically	undertaken	by	large	corporations	
since	 they	 are	 able	 to	 afford	 the	 additional	 costs	 in	 going	
through	 the	 more	 rigorous	 verification	 process.	 In	 a	 web	
browser	 an	 extended	 validation	 certificate	 is	 displayed	 as	 a	
green	title	bar.	

The	signature	algorithm	is	used	to	indicate	the	type	of	hash	
algorithms	supported	by	the	server	hosting	the	certificate.	The	
hash	algorithms	 range	 from	MD5	 to	SHA.	Due	 to	 the	proven	

MD5	collisions	[4]	and	weaknesses	with	SHA1	it	means	that	at	
a	minimum	SHA256	should	be	used	for	hashing	[9].		

The	validity	period	is	used	to	specify	the	period	through	
which	the	X.509	certificate	is	valid	for.	Two	fields	make	up	the	
validity	 period	 and	 they	 are	 notbefore	 and	 notafter.	 The	
notbefore	field	is	used	to	set	a	start	date	while	the		notafter	
field	is	used	to	set	an	end	date	for	the	certificate	validity.	

In	 most	 cases	 the	 time	 period	 specified	 for	 the	 validity	
period	will	be	set	to	a	 low	number,	anywhere	between	1	–	5	
years.	With	the	increasing	computational	power	and	the	rise	of	
quantum	computing,	weaknesses	 in	the	algorithms	used	may	
be	discovered,	hence	a	short	time	period	is	better	for	security	
reasons.	[8].		

The	public	key	field	will	be	populated	when	a	certificate	is	
generated	 [10].	 The	 certificate	 contains	 general	 information	
about	the	holder	and	the	public	key	will	be	embedded	in	the	
certificate.	 In	 addition	 to	 the	 public	 key	 being	 created	 a	
corresponding	private	key	will	also	be	created.		

The	public	and	private	keys	are	components	used	in	the	
PKI	to	help	create	a	secure	communication	path	between	two	
entities.		

When	a	CA	first	starts	out	it	will	create	a	root	certificate	
that	can	be	used	to	sign	other	certificates.	This	certificate	will	
be	used	to	create	what	is	called	an	intermediate	certificates	(IC)	
and	these	will	be	used	by	an	intermediate	authoritie	(IA)	to	sign	
certificates.		

The	main	reason	why	the	root	certificate	is	not	used	to	sign	
the	certificates	 is	 that	 if	 it	 is	 stolen	or	compromised	then	all	
certificates	signed	by	the	CA	would	be	at	risk.	By	getting	the	IA	
to	sign	the	certificates	using	the	IC,	it	means	that	the	root	CA	is	
protected	and	only	used	to	create	ICs.		

Once	an	IA	has	obtained	the	IC,	it	can	in	turn	create	its	own	
IC.	Each	time	an	IC	is	created	the	chain	that	is	included	in	the	
certificate	will	be	updated.	This	chain	shows	the	path	that	has	
been	taken	to	create	the	certificate.	This	means	that	all	ICs	used	
to	create	the	current	certificate	will	be	 included,	 terminating	
with	the	root	CA.		

By	 following	 this	process,	 if	 one	 IC	 is	 violated	 then	only	
that	 certificate	 is	 made	 invalid	 and	 therefore	 only	 the	
certificates	signed	with	it	will	required	to	be	reprocessed	[5].	

Each	 time	 a	 CA	 issues	 a	 certificate	 a	 serial	 number	
identifying	 the	 certificate	 is	 associated	 with	 it.	 This	 serial	
number	 should	 be	 unique	 and	 not	 repeated	 in	 any	 other	
certificate	issued	by	the	CA	[11].	

The	country	field	is	a	2	character	field	used	to	identify	the	
country	of	origin	the	certificate	is	located	in.	

The	 final	 field	that	will	 be	examined	is	 the	Organisation	
Unit	(OU)	field.	This	field	is	used	to	 indicate	the	organisation	
that	the	certificate	belongs	to.	

2.4		 Creating	X.509	Certificates	
There are two options for creating certificates, the first option is
called self-signed while the second option uses what is called a
CA.

ARES’18, August 2018, University of Hamburg, Hamburg Germany
	

4

Self-signing	allows	system	administrators	to	create	their	
own	 root	 certificate	and	use	 it	 to	 sign	 their	own	certificates.	
While	this	is	a	cost	saving	option,	it	has	the	disadvantage	that	
the	 identity	 of	 their	 server	 is	 not	 proven	 by	 a	 recognised	
authority	[1].		

The	 self-signing	 process	 should	 only	 be	 used	 when	 the	
client	 is	 connecting	 to	 internal	 servers	and	 there	 is	absolute	
trust	in	the	server	they	are	establishing	a	connection	with.	It	is	
also	important	to	note	that	the	root	certificate	generated	is	not	
included	in	the	root	store	of	the	web	browser.	This	means	that	
when	the	SSL	client	browses	to	the	website	an	error	message	
will	be	shown	indicating	that	the	connection	cannot	be	trusted.		

The	 user	will	 typically	 ignore	 the	warning	message	and	
proceed	 to	 the	website.	This	 behaviour	 is	 fine	 if	 the	 user	 is	
going	to	a	trusted	website	that	they	know,	but	there	is	evidence	
that	they	also	do	this	when	going	to	untrusted	websites	which	
can	end	up	being	a	security	risk	[12].		

An	alternative	to	using	self-signed	certificates	is	to	use	a	
CA.	The	purpose	of	the	CA	is	to	provide	a	mechanism	whereby	
the	 identity	of	 the	owner	of	 the	website	can	be	verified	by	a	
third	party	and	thus	increasing	trust.	

2.4.1 OpenSSL
For	creating	X.509	certificates	there	are	a	range	of	Application	
Program	Interfaces	(APIs)	available	that	can	be	used.	The	most	
popular	API	is	called	OpenSSL	[13].	

OpenSSL	 is	 an	 open	 source	 implementation	 of	 the	 SSL	
protocol	 that	 allows	 the	 use	 of	 various	 cryptographic	
algorithms	 such	 as	 AES,	 DES,	 and	 RSA	 to	 create	 X.509	
certificates	[14].	The	advantage	of	OpenSSL	is	that	it	is	available	
on	many	different	platforms	including	Windows	and	Linux.	

However	one	of	OpenSSL	 greatest	 strength	 is	 one	 of	 its	
weaknesses	in	that	with	it	being	an	open	source	project	there	
is	the	danger	that	the	code	has	not	been	fully	verified	via	the	
use	of	code	reviews	[15].	This	could	lead	to	exploits	as	was	seen	
with	the	heart	bleed	bug	[16].	

The	 rest	 of	 the	 paper	 will	 focus	 on	 describing	 a	
methodology	which	can	be	used	for	testing	for	weaknesses	in	
how	the	SSL	protocol	has	been	implemented	in	clients.	

3.	 PROCEDURE	
This	 section	 provides	 a	 high-level	 overview	 of	 the	 proposed	
methodology	for	testing	SSL.		This	methodology	will	be	used	for	
finding	weaknesses	in	an	SSL	implementation	as	well	as	being	
able	 to	 be	 used	 to	 identify	 differences	 in	 how	 SSL	 functions	
between	different	implementations.	

The	 block	 diagram	 in	 Figure	 3	 shows	 how	 the	
methodology	works.	
	

	

Figure	3:	Methodology	Block	Diagram	

3.1	 Compose	Tests	
The	 compose	 tests	 procedure	 requires	 the	 creation	 of	 a	
configuration	 file	 containing	 the	 tests	 that	 are	 going	 to	 be	
generated	by	the	methodology.	The	format	of	the	configuration	
file	is	shown	in	Figure	4.		

The	tests	will	be	created	programmatically	via	the	use	of	
the	Python	programming	language	and	the	OpenSSL	API.	The	
code	will	be	designed	to	be	modular	so	that	a	programmer	will	
be	able	to	create	new	tests	as	required.		

	

Figure	4:	Test	Configuration	File	

The	format	of	the	file	starts	with	a	test	name,	in	this	case	
the	first	test	is	named	TEST1.	The	test	name	is	used	to	create	a	
directory	containing	the	generated	HTML	page	alongside	the	
generated	X.509	certificates.		

The	option	parameter	in	the	configuration	file	is	used	to	
specify	the	test	that	is	going	to	be	executed.	Figure	4	shows	that	
TEST1	executes	the	NULLCN	option,	which	produces	an	X.509	
certificate	with	a	null	character	in	the	common	name	field.		

3.2	 Generate	Tests	Function	
The	 purpose	 of	 the	 Generate	 Test	 function	 is	 to	 take	 the	
generated	configuration	file	that	has	been	created	and	perform	
the	following	steps	:		
1. Generate	Directories	for	each	test 	
2. Generate		an	Apache	configuration	file	for	each	test		
3. Generate	an	HTML	page	for	each	test

	
Each	of	these	steps	will	be	examined	in	the	next	sections		

X.509 Certificate Error Testing ARES’18, August 2018, University of Hamburg, Hamburg Germany WOODSTOCK’97, July 2016, El Paso, Texas USA
	

 5

3.2.1 Generate Directories
The	 aim	 of	 the	 generate	 directories	 function	 is	 to	 create	 a	
unique	directory	based	upon	the	test	name.	This	function	will	
first	examine	the	current	directory	structure	and	if	 it	detects	
that	 there	are	 files	 left	 over	 from	a	previous	 test	 then	it	will	
delete	them.	This	ensures	that	the	test	will	be	starting	from	a	
blank	slate.	

3.2.2 Generate Apache Website Configuration
Once	the	directory	structure	has	been	created	the	next	step	is		
to	create	the	Apache	configuration	file.	This	configuration	file	
contains	 the	 directory	 locations	 of	 the	 root	 of	 each	 website	
generated	along	with	where	the	generated	X.509	certificate	and	
key	are	located.	

The	 final	 step	executed	 in	 the	Generate	Apache	Website	
function	is	to	generate	a	unique	HTML	page	for	each	test	based	
upon	 the	 option	 parameter	 in	 the	 configuration	 file.	 The	
generate	HTML	file	process	will	be	used	 to	uniquely	 identify	
each	test	that	will	be	executed	by	the	client.	

Once	this	process	has	finished	the	methodology	will	then	
proceed	 to	 the	 next	 step	 in	 Figure	 4,	 which	 is	 the	 Generate	
Certificate	procedure.	

3.3	 Generate	Certificate	
The	purpose	of	the	generate	certificate	function	is	to	generate	
unique	X.509	certificates	that	contain	errors.	Each	item	in	the	
configuration	file	will	be	processed	and	an	X.509	certificate	will	
be	generated	and	placed	in	 the	corresponding	directory	 that	
was	created	during	the	Generate	Test	function.	

3.4	 Test	Scenarios	
This	 section	 discusses	 the	 test	 Scenarios	 generated	 for	 the	
methodology	along	with	what	the	expected	result	of	each	test	
is.	 Table	 1	 shows	 the	 list	 of	 tests	 that	 are	 generated	 by	 the	
methodology	along	with	the	expected	outcomes.	
	

Table	1:	List	of	Tests	

Test	Name	 Result	
WrongKey	 Fail	 Ä	
SwapStartEnd	 Fail	 Ä	
MissingStart	 Fail	 Ä	
MissingEnd	 Fail	 Ä	
LongEnd	 Pass	 √	
NullCN	 Fail	 Ä	
FOOCN	 Fail	 Ä	
TabCN	 Fail	 Ä	
BackspaceCN	 Fail	 Ä	
LongOU	 Fail	 Ä	
LongRandomSerial	 Fail	 Ä	
SameSerial	 Fail	 Ä	

	

3.4.1 WrongKey Test
The	WrongKey	 test	will	 sign	 the	 X.509	certificate	 using	 the	
wrong	key.	This	means	that	the	certificate	will	be	invalid.	When	
an	SSL	client	encounters	the	certificate	 it	 is	expected	that	an	
error	message	will	be	generated	and	as	result	block	the	website	
from	loading.		

3.4.2 SwapStartEnd Test
The	SwapStartEnd	test		generates	a	certificate	with	the	start	
and	the	end	date	swapped.	Thus	a	certificate	which	is	supposed	
to	have	a	start	date	of	25/01/18	and	an	end	date	of	25/08/24	
will	instead	be	swapped	so	that	the	start	data	will	be	25/08/24	
and	the	end	date	will	be	25/01/18.		

It	 is	 expected	 that	 when	 an	 SSL	 client	 encounters	 this	
certificate	 that	 a	 warning	 page	 is	 displayed	 stating	 that	 the	
certificate	 is	 invalid	 and	 the	 website	 will	 be	 blocked	 from	
loading.	

3.4.3 MissingStart Test
The	MissingStart	test	will	generate	a	certificate	that	has	the	
start	date	missing	from	the	certificate.	It	is	expected	that	when	
an	SSL	 client	encounters	 this	 certificate	 that	a	warning	page	
will	be	displayed	stating	that	the	certificate	is	invalid	and	the	
website	will	be	blocked	from	loading.	

3.4.4 MissingEnd Test
The	MissingEnd	test	will	generate	a	certificate	that	has	the	end	
date	missing	from	the	certificate.	 It	is	expected	that	when	an	
SSL	client	encounters	this	certificate	that	a	warning	page	will	
be	 displayed	 stating	 that	 the	 certificate	 is	 invalid	 and	 the	
website	will	be	blocked	from	loading.	

3.4.5 LongEnd Test
The	LongEnd	test	will	generate	a	certificate	with	an	end	date	
that	is	far	off	in	the	future,	which	in	this	case	will	be	50	years.		

Normally	a	certificate	will	have	an	end	date	that	 is	5-10	
years	 in	the	 future	and	it	will	 be	 interesting	 to	 see	 if	an	SSL	
client	 can	handle	an	end	 date	 that	 is	50	 years	 in	 the	 future.	
When	 an	SSL	 client	 encounters	 this	 certificate	 it	 is	 expected	
that	no	error	messages	will	be	displayed	and	it	will	allow	access	
to	the	website.	

3.4.6 NullCN Test
The	NullCN	test	will	insert	a	null	character	(\0)	in	the	common	
name	of	an	X.509	certificate.	Ideally	the	encoding	routine	used	
should	reject	 this	 invalid	common	name,	as	NULL	characters	
should	not	be	allowed.	
	

3.4.7 FooCN Test
The	FooCN	 test	will	 include	 a	 different	 common	 name	 than	
what	is	expected.	The	website	will	be	using	the	domain	name	
of	 localhost.example.com	 but	 when	 the	 FOOCN	 option	 is	
specified	a	different	common	name	will	be	used	which	in	this	
case	will	be	localhost.foo.com.		

ARES’18, August 2018, University of Hamburg, Hamburg Germany
	

6

It	 is	 expected	 that	 when	 the	 browser	 encounters	 a	
certificate	 with	 a	 common	 name	 that	 is	 different	 from	 the	
domain	name	then	a	warning	message	will	be	displayed	and	the	
website	will	not	be	loaded.	

3.4.8 TabCN Test
The	 TabCN	 test	 will	 insert	 a	 tab	 escape	 character	 into	 the	
common	name.	Like	with	the	NULLCN	test	it	is	expected	that	
the	 tab	 escape	 character	 will	 be	 rejected	 by	 the	 encoding	
routines.		

3.4.9 BackspaceCN Test
The	BackspaceCN	test	will	insert	a	backspace	escape	character	
into	 the	 common	 name.	 Like	 with	 the	NULLCN	 option	 it	 is	
expected	that	the	tab	escape	character	will	be	rejected	by	the	
encoding	routines.	

3.4.10 LongOU Test
TheLongOU	test	will	use	a	long	character	string	and	attempt	to	
overflow	the	string	buffer	used	to	store	the	organizational	unit	
name.		

3.4.11 LongRandomSerial Test
The	LongRandomSerial	test	will	generate	a	large	number	that	
would	 not	 normally	 be	 seen	 on	 an	 X.509	 certificate.	 It	 is	
expected	that	there	will	be	an	upper	limit	to	the	length	of	the	
serial	 number	 and	 that	 the	 test	 will	 fail	 due	 to	 an	 invalid	
number	being	used.	

3.4.12 SameSerial Test
The	SameSerial	will	generate	the	same	serial	number	for	two	
X.509	 certificates.	 It	 is	 expected	 that	 when	 an	 SSL	 client	
encounters	a	certificate	with	 the	 same	serial	number	 from	a	
different	certificate	then	the	website	will	fail	to	load.	

4.		RESULTS	AND	DISCUSSION	
In	this	section,	the	results	from	the	experiments	are	presented	
in	the	same	order	as	described	in	the	test	scenario	section.	
Each	of	the	tests	will	be	executed	using	the	following	software	
configurations	as	shown	in	Table	2.		

Table2:	Test	Configurations	

Test	
Configuration	

Operating	System	 SSL	Client	

1	 Windows	10	
Enterprise	version	
10.0.17134	

Firefox	Web	
Browser	60.0.2	

2	 MAC	OSX	10.13.4	 Safari	Web	
Browser	11.1	

4.1	 Test	Configuration	1	Results	
The	results	from	the	test	configuration	1	are	shown	in	Table	3.		

Table	3:	Test	configuration	1	results	

Test	Option	 Expected	Result	 Result	
WrongKey	 Fail	 Ä	 Fail	 Ä	
SwapStartEnd	 Fail	 Ä	 Fail	 Ä	
MissingStart	 Fail	 Ä	 Fail	 Ä	
MissingEnd	 Fail	 Ä	 Fail	 Ä	
LongEnd	 Pass	 Ö	 Pass	 Ö	
NullCN	 Fail		 Ä	 Pass	 Ö	
FOOCN	 Fail	 Ä	 Fail	 Ä	
TabCN	 Fail	 Ä	 Fail	 Ä	
BackspaceCN	 Fail	 Ä	 Fail	 Ä	
LongOU	 Fail	 Ä	 Pass	 Ö	
LongRandomSerial	 Fail	 Ä	 Pass	 Ö	
SameSerial	 Fail	 Ä	 Fail	 Ä	

	
The	first	test	that	was	executed	was	the	WrongKey	test	and	

as	can	be	seen	from	the	results	in	Table	3	the	test	failed.	When	
the	test	web	page	was	loaded	a	Secure	Connection	Failed	error	
message	 was	 displayed	 as	 shown	 in	 Figure	 6.	 This	 is	 the	
expected	 result	 since	 the	 wrong	 key	 was	 used	 to	 sign	 the	
certificate.		

Figure	6:	Wrongkey	Secure	Connection	Error	

The	SwapStartEnd	test	is	where	the	start	and	end	dates	are	
swapped	in	the	X.509	certificate.	When	the	website	was	loaded	
a	warning	message	was	displayed	stating	that	the	website	was	
not	trusted.	This	is	the	expected	result.	

The	 next	 two	 tests	 MissingStart	 and	 MissingEnd	 were	
unable	to	be	run	since	the	Apache	webserver	would	not	allow	
the	 websites	 to	 load.	 This	 shows	 that	 Apache	 performs	 an	
internal	 validity	 check	 on	 the	 certificates	 that	 are	 being	
deployed	on	the	server.	 If	Apache	deems	that	the	certificates	
are	invalid	then	Apache	will	not	allow	the	website	to	start	until	
the	problems	have	been	resolved.	

The	LongEnd	test	is	were	the	end	date	is	set	50	years	into	
the	future.	The	result	of	this	test	was	a	pass	as	the	website	was	
loaded	with	no	errors	encountered,	which	was	as	expected.		

The	 next	 four	 tests	 NullCN,	 FOOCN,	 TabCN	 and	
BackspaceCN	focus	on	testing	the	Common	Name	(CN)	field.		

Three	 of	 the	 tests	 (FOOCN,	 TabCN	 and	 BackspaceCN)	
failed	as	expected.	The	reason	for	this	is	because	the	CN	field,	

X.509 Certificate Error Testing ARES’18, August 2018, University of Hamburg, Hamburg Germany WOODSTOCK’97, July 2016, El Paso, Texas USA
	

 7

which	 is	 the	 name	 of	 the	 website	 being	 visited	
(localhost.example.com),	is	being	modified.	So	this	means	that	
when	the	common	name	is	compared	to	the	website	name	then	
an	error	message	is	displayed	as	they	are	different.		

The	only	test	that	passed	when	it	should	have	failed	is	the	
NullCN	test.	In	this	test	the	common	name	was	set	to	the	value	
shown	in	Figure	7.		

	

	

Figure	7:	Setting	a	NullCN	

In	this	case	the	‘\0’	is	acting	as	null	termination	character	
for	 the	 string	 so	 that	 the	 common	 name	 is	
localhost.example.com	 instead	 of	
localhost.example.common.org.	This	means	that	the	CA	is	being	
fooled	 into	 signing	 a	 certificate	 for	 a	 domain	 which	 the	
customer	is	not	the	legitimate	owner,	and	thus	is	able	to	spoof	
the	website.		

A	concerning	fact	is	the	escape	characters	that	are	being	
allowed	in	the	fields	of	the	X.509	certificates.	There	have	been	
instances	 in	 the	 past	where	 SQL	 injection	 commands	 (SQLi)	
have	been	stored	in	the	fields,	therefore	if	a	database	is	being	
used	to	store	information	about	the	certificates	then	there	is	a	
possibility	that	it	could	be	vulnerable	to	SQLi	attacks	if	 input	
sanitisation	 is	 not	 being	 performed.	We	 would	 	 recommend	
that	 the	 X.509	 standard	 is	modified	 to	 stipulate	 that	 escape	
characters	are	forbidden	from	being	used	within	the	fields	of	
the	 certificate.	 thus	 only	 standard	 ASCII	 and	 UNICODE	
characters	would	be	accepted.		

The	 next	 test	 that	 was	 executed	 was	 the	 LongOU	 test	
where	an	attempt	is	made	to	overflow	the	OU	field	of	the	X.509	
certificate.	 This	 is	 being	 done	 to	 ascertain	 if	 this	 field	 is	
vulnerable	to	a	buffer	overflow	attack.		

The	expected	result	for	this	test	is	to	fail	but	as	can	be	seen	
from	the	results	this	test	passed.	The	reason	for	this	result	is	
because	when	it	came	to	creating	the	certificate	the	OU	field	
was	 not	 included	 as	 it	 exceeded	 the	 maximum	 permissible	
value	 for	 this	 field.	This	 also	 proves	 that	 the	OU	 field	 is	 not	
required	for	a	valid	certificate	to	be	created	since	the	website	
is	loaded	successfully	when	test	is	being	executed.	

The	LongRandomSerial	test	is	a	test	whereby	an	attempt	
to	overflow	the	field	storing	the	serial	number	is	made.	During	
the	development	of	this	test	it	was	attempted	to	come	up	with	
a	large	enough	number	that	would	result	in	the	serial	number	
being	rejected,	but	the	serial	number	is	converted	into	hex	and	
the	field	grows	to	accommodate	the	larger	maximum	number	
used	to	generate	the	serial	number.	There	did	not	appear	to	be	
an	upper	limit	to	the	length	of	the	serial	number	and	thus	the	
test	 passed.	 In	 the	 test	 the	 largest	 number	 tried	 was	
321961016614730452433428166410946947104475398322
062851583796333

The	final	test	that	was	undertaken	was	the	SameSerial	test	
that	 uses	 the	 scenario	 of	 two	 certificates	 on	 the	 same	 web	
server	having	the	same	serial	number.		

When	executing	this	test	it	was	noted	that	the	first	website	
that	was	 visited	 on	 port	 3009	 resulted	 in	 the	website	 being	
displayed	 properly,	 with	 no	 error	 messages	 appearing.	
However	when	the	second	part	of	the	test	was	loaded	on	port	
3010	an	error	message	was	encountered	stating	that	an	invalid	
certificate	was	encountered	due	to	a	duplicate	serial	number

The	same	test	was	repeated	again	with	new	certificates,	
and	 this	 time	 the	 site	 accessed	 through	 port	 3010	was	 first	
visited	which	result	in	a	successful	view	of	the	website	and	then	
the	site	accessed	on	port	3009	was	then	visited	which	resulted	
in	 the	 error	message	 stating	 that	 an	 invalid	 certificate	 was	
encountered	due	to	a	duplicate	serial	number.	This	process	was	
repeated	ten	times	yielding	 	 the	same	result.	This	appears	to	
indicate	that	the	first	website	visited	will	be	classified	as	the	
legitimate	website	while	the	second	website	will	be	viewed	as	
the	fake.		

This	means	that	if	an	attacker	can	get	the	user	to	visit	the	
illegitimate	website	first,	then	the	attacker	will	have	a	higher	
chance	of	being	 successful.	This	 result	proves	 that	 there	 is	 a	
need	 for	 a	methodology,	 such	 as	 the	 one	 developed	 for	 this	
paper,	that	can	be	used	to	find	SSL	weaknesses	like	this.		

With	having	successfully	executed	the	first	set	of	tests	the	
next	step	was	to	execute	the	same	tests	but	using	the	second		
configuration.		

4.2	Test	Configuration	2	Results	
The	results	from	the	test	configuration	2	are	shown	in	Table	4.		

Table	4:	Test	Configuration		2	Results	

Test	Option	 Expected	Result	 Actual	Result	
WrongKey	 Fail	 Ä	 Fail	 Ä	
SwapStartEnd	 Fail	 Ä	 Fail	 Ä	
MissingStart	 Fail	 Ä	 Fail	 Ä	
MissingEnd	 Fail	 Ä	 Fail	 Ä	
LongEnd	 Pass	 Ö	 Pass	 Ö	
NullCN	 Fail	 Ä	 Incomplete	
FOOCN	 Fail	 Ä	 Fail	 Ä	
TabCN	 Fail	 Ä	 Fail	 Ä	
BackspaceCN	 Fail	 Ä	 Fail	 Ä	
LongOU	 Fail	 Ä	 Pass	 Ö	
LongRandomSerial	 Fail	 Ä	 Fail	 Ä	
SameSerial	 Fail	 Ä	 Pass	 Ö	
	

The	majority	of	the	tests	using	test	configuration	2	had	the	
same	result	as	the	test	1	configuration,	however	there	are	three	
tests	that	had	different	results.	The	first	result	that	is	different	
is	with	the	NullCN	test.	When	an	attempt	was	made	to	generate	
the	test	it	was	found	that	the	code	would	not	compile	and	an	

ARES’18, August 2018, University of Hamburg, Hamburg Germany
	

8

error	message	was	returned	which	stated	that	NULL	characters	
could	not	be	encoded	into	the	CN,	 this	 is	exhibiting	different	
behavior	 from	 when	 the	 same	 code	 was	 run	 in	 the	 test	 1	
configuration.	

The	next	result	that	was	different	is	the	SameSerial	Test.	
In	 the	 test	1	 configuration	 the	SameSerial	 failed	as	 expected	
when	the	second	web	page	was	visited,	however	in	the	test	2	
configuration	the	test	passed.	The	final	result	that	was	different	
was	the	LongRandomSerial	test.	The	test	failed	but	in	the	test	1	
configuration	it	passed.	

The	 reason	 as	 to	 why	 the	 NullCN,	 SameSerial	 and	
LongRandomSerial	tests	had	different	results		is	in	the	way	that	
the	 SSL	 client	 is	 implemented,	 since	 the	 standard	 does	 not	
insist	 upon	 a	 standard	 implementation,	 it	 is	 left	 up	 to	 the	
programmers	to	implement	and	this	can	result	in	differences	in	
the	way	the	clients	implement	certain	functionality.	This	again	
highlights	 the	 need	 for	 a	 methodology,	 such	 as	 the	 one	
described	 in	 the	 paper,	 for	 testing	 SSL	 as	 it	 can	 be	 used	 to	
illustrate	 differences	 in	 behaviour	 	 between	 SSL	
implementations.		

From	 the	 test	 results	 it	 shows	 that	 the	 Firefox	 web	
browser	is	more	stringent	in	checking	for	errors	in	the	X.509	
certificates,	 while	 the	 Safari	 web	 browser	 is	 more	 lax	 in	
checking	for	errors.	

5.	 CONLUSIONS	
In	this	work	we	have	presented	a	methodology	that	can	be	

utilised	to	test	for	weaknesses	in	how	a	client	has	implemented	
the	SSL	protocol.		

One	 of	 the	 main	 results	 that	 were	 achieved	 was	 to	
highlight	how	the	different	operating	systems	implement	the	
SSL	protocol	as	can	be	seen	with	the	NullCN,	SameSerial	and	
LongRandomSerial	 test.	 These	 tests	 show	 that	 the	
methodology	is	able	to	be	used	to	detect	differences	in	how	the	
SSL	protocol	has	been	implemented	and	proves	the	usefulness	
of	the	proposed	methodology.			

One	area	of	concern	that	was	discovered	during	the	testing	
was	 that	 escape	 characters	 can	 be	 encoded	 in	 the	 X.509	
certificates	fields	like	Organisational	Unit,	Common	Name	and	
so	on.	This	fact	could	be	used	to	encode	SQLi	attacks	against	the	
CA	 database	 that	 is	 used	 to	 store	 certificate	 details.	 One	
recommendation	that	is	made	is	that	the	specification	should	
change	to	ban	these	types	of	characters	from	being	allowed	in	
the	X.509	certificate	and	this	should	help	to	remediate	against	
this	problem.		

From	the	evaluation	of	the	results	it	was	shown	that	it	was	
not	possible	to	exceed	the	limitations	of	the	fields	in	an	X.509	
certificate	and	force	a	buffer	overflow	attack.	The	reason	as	to	
why	 the	 limits	 could	 not	 be	 exceeded	 is	 because	 the	 ASN1	
structure	was	predefined	by	the	use	of	OpenSSL	API	and	it	was	
not	possible	to	change	this.		

To	 test	 for	buffer	overflows	a	different	 approach	would	
have	 to	be	 taken	whereby	 the	methodology	would	create	 its	

own	 ASN1	 structure	 and	 not	 be	 reliant	 upon	 the	 structure	
defined	by	OpenSSL.		

Another	area	that	could	be	investigated	is	to	examine	the	
encoding	 of	 	 SQLi	 attacks	 within	 the	 X.509	 certificates	 as	
numerous	agencies	store	the	certificates	using	databases.		

REFERENCES	
	
[1]	Liddy,	C.	and	Sturgeon,	A.	The	evolution	of	certificate	model	architecture.	
Information	management	&	computer	security,	7,	2	(1999),	95-100.	
[2]	Langley,	A.	Apple’s	SSL/TLS	bug,	2014.	City.	
[3]	Toma,	C.	Security	Issues	of	the	Digital	Certificates	within	Public	Key	
Infrastructures.	Informatica	Economica,	13,	1	(2009),	16.	
[4]	Kaminsky,	D.,	Patterson,	M.	L.	and	Sassaman,	L.	PKI	layer	cake:	New	collision	
attacks	against	the	global	X.	509	infrastructure.	Springer,	City,	2010.	
[5]	Huang,	L.	S.,	Rice,	A.,	Ellingsen,	E.	and	Jackson,	C.	Analyzing	forged	SSL	
certificates	in	the	wild.	IEEE,	City,	2014.	
[6]	Kim,	T.	H.-J.,	Huang,	L.-S.,	Perrig,	A.,	Jackson,	C.	and	Gligor,	V.	Accountable	key	
infrastructure	(AKI):	A	proposal	for	a	public-key	validation	infrastructure.	ACM,	
City,	2013.	
[7]	Kamp,	P.-H.	Please	Put	OpenSSL	Out	of	Its	Misery.	ACM	Queue,	12,	3	(2014),	
20-23.	
[8]	Holz,	R.,	Braun,	L.,	Kammenhuber,	N.	and	Carle,	G.	The	SSL	landscape:	a	
thorough	analysis	of	the	x.	509	PKI	using	active	and	passive	measurements.	ACM,	
City,	2011.	
[9]	Ouvrier,	G.,	Laterman,	M.,	Arlitt,	M.	and	Carlsson,	N.	Characterizing	the	
HTTPS	trust	landscape:	a	passive	view	from	the	edge.	IEEE	Communications	
Magazine,	55,	7	(2017),	36-42.	
[10]	Huang,	J.	and	Nicol,	D.	M.	An	anatomy	of	trust	in	public	key	infrastructure.	
International	Journal	of	Critical	Infrastructures,	13,	2-3	(2017),	238-258.	
[11]	Basney,	J.,	Fleury,	T.	and	Gaynor,	J.	CILogon:	A	federated	X.	509	certification	
authority	for	cyberinfrastructure	logon.	Concurrency	and	Computation:	Practice	
and	Experience,	26,	13	(2014),	2225-2239.	
[12]	Reeder,	R.	W.,	Felt,	A.	P.,	Consolvo,	S.,	Malkin,	N.,	Thompson,	C.	and	Egelman,	
S.	An	Experience	Sampling	Study	of	User	Reactions	to	Browser	Warnings	in	the	
Field	(2018).	
[13]	Bhargavan,	K.,	Fournet,	C.	and	Kohlweiss,	M.	mitls:	Verifying	protocol	
implementations	against	real-world	attacks.	IEEE	Security	&	Privacy,	14,	6	
(2016),	18-25.	
[14]	Saraiva,	P.	M.	C.	OpenSSL	acceleration	using	Graphics	Processing	Units.	PhD	
diss.,	TECNICO	LISBOA	(2013).	
[15]	Jimenez,	M.,	Papadakis,	M.	and	Le	Traon,	Y.	An	empirical	analysis	of	
vulnerabilities	in	openssl	and	the	linux	kernel.	IEEE,	City,	2016.	
[16]	Momani,	E.	M.	H.	and	Hudaib,	A.	A.	Z.	Comparative	Analysis	of	Open-SSL	
Vulnerabilities	&	Heartbleed	Exploit	Detection.	International	Journal	of	
Computer	Science	and	Security,	8,	4	(2014),	159-176.	
	

	Blank Page

