378 research outputs found

    Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors

    Get PDF
    The gravitational wave resonant detectors can be used as detectors of quark nuggets, like nuclearites (nuclear matter with a strange quark). This search has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower detectors: signals in the bar due to showers are continuously detected and used to characterize the antenna performances. The bar excitation mechanism is based on the so called thermo-acoustic effect, studied on dedicated experiments that use particle beams. This mechanism predicts that vibrations of bars are induced by the heat deposited in the bar from the particle. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. We will show the results of ten years of data from NAUTILUS (2003-2012) and 7 years from EXPLORER (2003-2009). The experimental limits we obtain are of interest because, for nuclearites of mass less than 10−410^{-4} grams, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates.Comment: presented to the 33rd International Cosmic Ray Conference Rio de Janeiro 201

    MiniGRAIL progress report 2004

    Get PDF
    The MiniGRAIL detector was improved. The sphere was replaced by a slightly larger one, having a diameter of 68 cm (instead of 65 cm), reducing the resonant frequency by about 200 Hz to around 2.9 kHz. The last four masses of the attenuation system were machined to increase their resonant frequency and improve the attenuation around the resonant frequency of the sphere. In the new sphere, six holes were machined on the TIGA positions for easy mounting of the transducers. During the last cryogenic run, two capacitive transducers and a calibrator were mounted on the sphere. The first transducer was coupled to a double-stage SQUID amplifier having a commercial quantum design SQUID as a first stage and a DROS as a second stage. The second transducer was read by a single-stage quantum design SQUID. During the cryogenic run, the sphere was cooled down to 4 K. The two-stage SQUID had a flux noise of about 1.6 ÎŒ0 Hz−1/2. The detector was calibrated and the sensitivity curve of MiniGRAIL was determined

    On the crosscorrelation between Gravitational Wave Detectors for detecting association with Gamma Ray Bursts

    Get PDF
    Crosscorrelation of the outputs of two Gravitational Wave (GW) detectors has recently been proposed [1] as a method for detecting statistical association between GWs and Gamma Ray Bursts (GRBs). Unfortunately, the method can be effectively used only in the case of stationary noise. In this work a different crosscorrelation algorithm is presented, which may effectively be applied also in non-stationary conditions for the cumulative analysis of a large number of GRBs. The value of the crosscorrelation at zero delay, which is the only one expected to be correlated to any astrophysical signal, is compared with the distribution of crosscorrelation of the same data for all non-zero delays within the integration time interval. This background distribution is gaussian, so the statistical significance of an experimentally observed excess would be well-defined. Computer simulations using real noise data of the cryogenic GW detectors Explorer and Nautilus with superimposed delta-like signals were performed, to test the effectiveness of the method, and theoretical estimates of its sensitivity compared to the results of the simulation. The effectiveness of the proposed algorithm is compared to that of other cumulative techniques, finding that the algorithm is particularly effective in the case of non-gaussian noise and of a large (100-1000s) and unpredictable delay between GWs and GRBs.Comment: 7 pages, 4 figures, 1 table. Submitted by Phys. Rev.

    Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS

    Full text link
    We performed a search for short gravitational wave bursts using about 3 years of data of the resonant bar detectors Nautilus and Explorer. Two types of analysis were performed: a search for coincidences with a low background of accidentals (0.1 over the entire period), and the calculation of upper limits on the rate of gravitational wave bursts. Here we give a detailed account of the methodology and we report the results: a null search for coincident events and an upper limit that improves over all previous limits from resonant antennas, and is competitive, in the range h_rss ~1E-19, with limits from interferometric detectors. Some new methodological features are introduced that have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure

    A review of current induction strategies and emerging prognostic factors in the management of children and adolescents with acute lymphoblastic leukemia

    Get PDF
    Introduction: Acute lymphoblastic leukemia is the most frequent hematologic malignancy in children. Almost 95% of children potentially achieve a complete remission after the induction treatment, but over the last years, new insights in the genomic disease profile and in minimal residual disease detection techniques have led to an improvement in the prognostic stratification, identifying selected patients’ subgroups with peculiar therapeutic needs. Areas covered: According to a comprehensive search of peer-review literature performed in Pubmed, in this review we summarize the recent evidences on the induction treatment strategies comprised in the children acute lymphoblastic leukemia scenario, focusing on the role of key drugs such as corticosteroids and asparaginase and discussing the crucial significance of the genomic characterization at baseline which may drive the proper induction treatment choice. Expert opinion: Current induction strategies already produce durable remissions in a significant proportion of standard-risk children with acute lymphoblastic leukemia. A broader knowledge of the biologic features related to acute lymphoblastic leukemia subtypes with worse prognosis, and an optimization of targeted drugs now available, might lead to the achievement of long-term molecular remissions in this setting

    Effect of cosmic rays on the resonant gravitational wave detector NAUTILUS at temperature T=1.5 K

    Get PDF
    The interaction between cosmic rays and the gravitational wave bar detector NAUTILUS is experimentally studied with the aluminum bar at temperature of T=1.5 K. The results are compared with those obtained in the previous runs when the bar was at T=0.14 K. The results of the run at T = 1.5 K are in agreement with the thermo-acoustic model; no large signals at unexpected rate are noticed, unlike the data taken in the run at T = 0.14 K. The observations suggest a larger efficiency in the mechanism of conversion of the particle energy into vibrational mode energy when the aluminum bar is in the superconductive status.Comment: 7 pages, 3 figures, 2 tables. Accepted by Physics Letters

    All-sky upper limit for gravitational radiation from spinning neutron stars

    Full text link
    We present results of the all-sky search for gravitational-wave signals from spinning neutron stars in the data of the EXPLORER resonant bar detector. Our data analysis technique was based on the maximum likelihood detection method. We briefly describe the theoretical methods that we used in our search. The main result of our analysis is an upper limit of 2×10−23{\bf 2\times10^{-23}} for the dimensionless amplitude of the continuous gravitational-wave signals coming from any direction in the sky and in the narrow frequency band from 921.00 Hz to 921.76 Hz.Comment: 12 pages, 4 figures, submitted to Proceedings of 7th Gravitational Wave Data Analysis Workshop, December 17-19, 2002, Kyoto, Japa

    Increasing the bandwidth of resonant gravitational antennas: The case of Explorer

    Full text link
    Resonant gravitational wave detectors with an observation bandwidth of tens of hertz are a reality: the antenna Explorer, operated at CERN by the ROG collaboration, has been upgraded with a new read-out. In this new configuration, it exhibits an unprecedented useful bandwidth: in over 55 Hz about its frequency of operation of 919 Hz the spectral sensitivity is better than 10^{-20} /sqrt(Hz) . We describe the detector and its sensitivity and discuss the foreseable upgrades to even larger bandwidths.Comment: 4 pages- 4 figures Acceted for publication on Physical Review Letter

    Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001

    Get PDF
    We report the result from a search for bursts of gravitational waves using data collected by the cryogenic resonant detectors EXPLORER and NAUTILUS during the year 2001, for a total measuring time of 90 days. With these data we repeated the coincidence search performed on the 1998 data (which showed a small coincidence excess) applying data analysis algorithms based on known physical characteristics of the detectors. With the 2001 data a new interesting coincidence excess is found when the detectors are favorably oriented with respect to the Galactic Disk

    All-sky search of NAUTILUS data

    Full text link
    A search for periodic gravitational-wave signals from isolated neutron stars in the NAUTILUS detector data is presented. We have analyzed half a year of data over the frequency band Hz,thespindownrange Hz, the spindown range Hz/s and over the entire sky. We have divided the data into 2 day stretches and we have analyzed each stretch coherently using matched filtering. We have imposed a low threshold for the optimal detection statistic to obtain a set of candidates that are further examined for coincidences among various data stretches. For some candidates we have also investigated the change of the signal-to-noise ratio when we increase the observation time from two to four days. Our analysis has not revealed any gravitational-wave signals. Therefore we have imposed upper limits on the dimensionless gravitational-wave amplitude over the parameter space that we have searched. Depending on frequency, our upper limit ranges from 3.4×10−233.4 \times 10^{-23} to 1.3×10−221.3 \times 10^{-22}. We have attempted a statistical verification of the hypotheses leading to our conclusions. We estimate that our upper limit is accurate to within 18%.Comment: LaTeX, 12 page
    • 

    corecore