3 research outputs found

    Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets

    Full text link
    Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, where datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks

    Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets (Ultra Large Dataset)

    No full text
    Recently, pre-trained foundation models have shown significant advancements in multiple fields. However, the lack of datasets with labeled features and codebases has hindered the development of a supervised foundation model for molecular tasks. Here, we have carefully curated seven datasets specifically tailored for node- and graph-level prediction tasks to facilitate supervised learning on molecules. Moreover, to support the development of multi-task learning on our proposed datasets, we created the Graphium graph machine learning library. Our dataset collection encompasses two distinct categories. Firstly, the TOYMIX category modifies three small existing datasets with additional data for multi-task learning. Secondly, the LARGEMIX category includes four large-scale datasets with 344M graph-level data points and 409M node-level data points from ∼5M unique molecules. Finally, the ultra-large dataset contains 2,210M graph-level data points and 2,031M node-level data points coming from 86M molecules. Hence our datasets represent an order of magnitude increase in data volume compared to other 2D-GNN datasets. In addition, recognizing that molecule-related tasks often span multiple levels, we have designed our library to explicitly support multi-tasking, offering a diverse range of multi-level representations, i.e., representations at the graph, node, edge, and node-pair level. We equipped the library with an extensive collection of models and features to cover different levels of molecule analysis. By combining our curated datasets with this versatile library, we aim to accelerate the development of molecule foundation models. Datasets and code are available at https://github.com/datamol-io/graphium.This upload includes the latest version of the Ultra large dataset described in the paper, due to its large size, it is uploaded independently
    corecore