48 research outputs found

    Stochastic Signal Processing and Power Control for Wireless Communication Systems

    Get PDF
    This dissertation is concerned with dynamical modeling, estimation and identification of wireless channels from received signal measurements. Optimal power control algorithms, mobile location and velocity estimation methods are developed based on the proposed models. The ultimate performance limits of any communication system are determined by the channel it operates in. In this dissertation, we propose new stochastic wireless channel models which capture both the space and time variations of wireless systems. The proposed channel models are based on stochastic differential equations (SDEs) driven by Brownian motions. These models are more realistic than the time invariant models encountered in the literature which do not capture and track the time varying characteristics of the propagation environment. The statistics of the proposed models are shown to be time varying, and converge in steady state to their static counterparts. Cellular and ad hoc wireless channel models are developed. In urban propagation environment, the parameters of the channel models can be determined from approximating the band-limited Doppler power spectral density (DPSD) by rational transfer functions. However, since the DPSD is not available on-line, a filterbased expectation maximization algorithm and Kalman filter to estimate the channel parameters and states, respectively, are proposed. The algorithm is recursive allowing the inphase and quadrature components and parameters to be estimated on-line from received signal measurements. The algorithms are tested using experimental data, and the results demonstrate the method’s viability for both cellular and ad hoc networks. Power control increases system capacity and quality of communications, and reduces battery power consumption. A stochastic power control algorithm is developed using the so-called predictable power control strategies. An iterative distributed algorithm is then deduced using stochastic approximations. The latter only requires each mobile to know its received signal to interference ratio at the receiver

    Performance Guaranteed Inertia Emulation for Diesel-Wind System Feed Microgrid via Model Reference Control

    Full text link
    In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the reference model. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plus a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.Comment: 2017 IEEE PES Innovative Smart Grid Technologies Conferenc

    Revisiting Lightweight Encryption for IoT Applications: Error Performance and Throughput in Wireless Fading Channels with and without Coding

    Get PDF
    © 2013 IEEE. Employing heavy conventional encryption algorithms in communications suffers from added overhead and processing time delay; and in wireless communications, in particular, suffers from severe performance deterioration (avalanche effect) due to fading. Consequently, a tremendous reduction in data throughput and increase in complexity and time delay may occur especially when information traverse resource-limited devices as in Internet-of-Things (IoT) applications. To overcome these drawbacks, efficient lightweight encryption algorithms have been recently proposed in literature. One of those, that is of particular interest, requires using conventional encryption only for the first block of data in a given frame being transmitted. All the information in the remaining blocks is transmitted securely without the need for using heavy conventional encryption. Unlike the conventional encryption algorithms, this particular algorithm achieves lower overhead/complexity and higher data throughput. Assuming the additive white Gaussian noise (AWGN) channel, the performance of the lightweight encryption algorithm under study had been evaluated in literature in terms of throughput under the assumption that the first block, that undergoes conventional encryption, is free of error, which is practically unfeasible. In this paper, we consider the AWGN channel with Rayleigh fading and assume that the signal experiences a certain channel bit error probability and investigate the performance of the lightweight encryption algorithm under study in terms of bit error probability and throughput. We derive analytical expressions for these performance metrics considering modulated signals with and without coding. In addition, we propose an extension to the lightweight encryption algorithm under study by further enhancing its security level without significantly affecting the overhead size and processing time. Via numerical results we show the superiority of the lightweight encryption algorithm under study over the conventional encryption algorithms (like the AES) and the lightweight encryption algorithms proposed in literature in terms of error and throughput performance

    Perspective of Islamic Law (Sharia) towards the Liability of Medical Malpractice

    Get PDF
    In this brief study, I have addressed the view of Islamic Law (Sharia) towards liability in medical malpractice. I have cited the views of early scholars from the four schools of Islamic jurisprudence as well as contemporary ones and quoted decisions issued by the jurisprudential academies in reference to this important subject. Moreover, the study sheds light on the position of Sharia especially with the introduction of multidisciplinary modern medicine treatments and the increased likelihood of consequent medical malpractice. It is noteworthy that the doctor\u27s commitment to the rules and principles of the medical profession without negligence absolves him/her of liability. References on liability are well documented on the Quran, the Sunnah, and the consensus. By medical malpractice, I refer to the following: «the failure of the doctor or medical professional to meet his/her obligations as imposed by the professional requirements». The basic principle is that the commitment of the physician in the exercise of his/her profession with the necessary care, but not the outcome. Therefore, medical malpractice is considered negligence or breach of duty to practice vigilant care, which is consistent with the generally accepted scientific best practices. Negligence in medical malpractice is the cause of liability as it resulted in harming the patients’ rights such as the amputation of a sound limb or organ instead of the diseased one, or loss of eyesight, and the like. Medical malpractice is either material, defined as an error, which is not subject to the technical differences unrelated to recognized therapeutic methods; or technical: intended as a deviation of a medical professional from the terms and rules that govern the profession
    corecore