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Abstract 
This dissertation is concerned with dynamical modeling, estimation and identification of 

wireless channels from received signal measurements. Optimal power control algorithms, 

mobile location and velocity estimation methods are developed based on the proposed 

models. 

    The ultimate performance limits of any communication system are determined by the 

channel it operates in. In this dissertation, we propose new stochastic wireless channel 

models which capture both the space and time variations of wireless systems. The 

proposed channel models are based on stochastic differential equations (SDEs) driven by 

Brownian motions. These models are more realistic than the time invariant models 

encountered in the literature which do not capture and track the time varying 

characteristics of the propagation environment. The statistics of the proposed models are 

shown to be time varying, and converge in steady state to their static counterparts. 

Cellular and ad hoc wireless channel models are developed. 

    In urban propagation environment, the parameters of the channel models can be 

determined from approximating the band-limited Doppler power spectral density (DPSD) 

by rational transfer functions. However, since the DPSD is not available on-line, a filter-

based expectation maximization algorithm and Kalman filter to estimate the channel 

parameters and states, respectively, are proposed. The algorithm is recursive allowing the 

inphase and quadrature components and parameters to be estimated on-line from received 

signal measurements. The algorithms are tested using experimental data, and the results 

demonstrate the method’s viability for both cellular and ad hoc networks. 

    Power control increases system capacity and quality of communications, and reduces 

battery power consumption. A stochastic power control algorithm is developed using the 

so-called predictable power control strategies. An iterative distributed algorithm is then 

deduced using stochastic approximations. The latter only requires each mobile to know 

its received signal to interference ratio at the receiver.   



 vii

   Several methods for tracking a user based on wave scattering models and particle 

filtering are presented. These algorithms cope with nonlinearities in order to estimate the 

mobile location and velocity. They take into account non-line-of-sight and multipath 

propagation environments. To show that the algorithms are robust numerical results are 

presented to evaluate their performance of the algorithms in the presence of parametric 

uncertainties.   
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Chapter 1 

 

Introduction 
 

 

1.1 Overview 
Recent advances in wireless communications and electronics, such as wireless micro-

sensor networks, internet technologies and standards, home networking, and sensor 

devices in micro-scale, pose new challenges and require innovative and multidisciplinary 

solutions. These technologies have tremendous applications in health, chemical, and 

biological monitoring. On the other hand, these advances have enabled the development 

of new low cost, low power multifunctional micro-sensors, which communicate over 

small distances [1].  

    A micro-sensing device consists of a sensing unit, a data processing unit, a transceiver 

unit, and a power unit. These micro-sensor devices make up micro-sensor networks 

comprised of hundreds or thousands of ad hoc tiny sensor nodes, which spread across a 

geographical area, and collaborate among themselves to create a sensing network. These 

devices are preparing the ground for the emergence of new applications, and the 

development of new technologies, which can provide access of information anytime 

anywhere by collecting, processing and disseminating information data. Internet, satellite, 

ad hoc networks and wireless media in general, are becoming the neural system for a 

global community providing the means of sharing information collected by micro-sensing 

devices. These infrastructures-less networks consist mostly of heterogeneous wireless 

mobile devices with various capabilities, power constraints and mobility characteristics. 

    Wireless communication networks are constrained by available bandwidth, but the user 

population continues to grow. Wireless systems adapt to these pressures through more 
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efficient use of bandwidth; code division multiplexing (CDMA) and transmitter power 

control (PC) are two examples. Adaptive transmission methods including modulation, 

PC, and channel coding require models of the communication channels and noise 

sources. In this dissertation we are concerned with cellular and ad hoc wireless 

communication systems, which deal with large amount of aggregate non-homogeneous 

traffic information, under very diverse operational conditions such as different 

propagation environments and transmission technologies. The operational success of such 

wireless systems depends on the correct characterization of the input-output response of 

the fading channel statistics and its realization through state space models. The efficient 

utilization of bandwidth allocation and in general the system performance relies on the 

deployment of dynamic quality of service (QoS) measures, which are robust to the 

channel characteristic and the aggregate non-homogeneity of the traffic [2, 3]. 

    The ultimate performance limits of any communication system are determined by the 

channel it operates in [78]. Realistic channel models are thus of utmost importance for 

system design and testing. In this dissertation, new stochastic time varying models for 

cellular and ad hoc networks are presented. These models capture the spatio-temporal 

variations of wireless channels, which are due to the relative mobility of the receiver 

and/or transmitter and scatterers. Unlike existing models of wireless networks that are 

mainly static in the sense that their statistics do not vary as functions of time [4-6], our 

work target the dynamic behavior of the propagation environment. The random variables 

characterizing the instantaneous power in static channel models are generalized to 

dynamical models including random processes with time varying (TV) statistics. Inphase 

and quadrature components of the TV wireless channel and their statistics are derived 

from the stochastic state space models. 

    Since these models are based on state space representations, we propose to estimate 

with small finite parameter set the channel parameters and state variables, which 

represent the inphase and quadrature components directly from received signal level 

measurements. The latter are usually available or easy to obtain in any wireless network. 

A filter-based expectation maximization (EM) algorithm [79, 80] and Kalman filter [81] 

are employed in the estimation process. These filters use only the first and second order 
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statistics and are recursive and therefore can be implemented on-line. Experimental 

testing of the proposed models and estimation algorithms is carried out using received 

signal level measurement data collected from cellular and ad hoc wireless environments. 

    Wireless networks are subject to time spread (multipath), Doppler spread (time 

variations), path loss, and interference seriously degrading their performance, power 

control is crucial to compensate for these factors for an acceptable performance in both 

ad hoc and cellular systems. The control of the transmitted power provides for an efficient 

and optimal performance of wireless systems [2, 3, 7, 8]. It increases system capacity and 

quality of communications, and reduces battery power consumption. Co-channel 

interference caused by frequency reuse is the most restraining factor on the system 

capacity. The correct usage of any power control algorithm (PCA) and thereby the power 

optimization of the channel models, require the use of such channel models that capture 

both temporal and spatial variations in the channel, which exhibit more realistic behavior 

of wireless communication systems [2, 3, 9-16]. Since few temporal or even spatio-

temporal dynamical models have so far been investigated with the application of any 

PCA, the suggested dynamical models result in new PCAs that provide a far more 

realistic and efficient optimum control for wireless channels.  

    The third aspect of this dissertation is location based services (LBS), also known as 

location services (LCS), and mobile or wireless location-based services. This is an 

innovative technology that provides information or making information available based 

on the geographical location of the user. The ability to pinpoint the location of an 

individual has an obvious and vital value in the context of emergency services [17]. 

Pinpointing the location of people, sensor devices, and other valuable assets also open the 

door to a new world of previously unimagined information services and m-commerce 

possibilities. In this new world, facilitations as “Where is the nearest ATM?”, “Check 

traffic conditions on the highway on my route”, “Find a parking lot nearby”, as well as 

answers to “Where is my advisor?”, “Where is my car?” will be an everyday rule in our 

lives. Mobile location has also obvious applications in wireless micro-sensor networks, 

for e.g., in military applications where sensors are dropped by thousands in hostile terrain 

to probe movement of enemy troops. Several market studies predicted that mobile 
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location services will grow highly in the next few years [18]. Some estimate that LBS 

will be the next “Golden Child”. 

 

1.2 Related Literature Review 
1.2.1 Wireless Channel Modeling 

The wireless communications channel constitutes the basic physical link between the 

transmitter and the receiver antennas. Its modeling has been and continues to be a 

tantalizing issue, while being one of the most fundamental components based on which 

transmitters and receivers are designed and optimized.  

    In addition to the exponential power path-loss, wireless channels suffer from stochastic 

short term fading (STF) due to multipath, and stochastic long term fading (LTF) due to 

shadowing depending on the geographical area. STF corresponds to severe signal 

envelope fluctuations, which occur is densely build-up areas that filled with lots of 

objects like buildings, vehicles, etc. On the other hand, LTF corresponds to less severe 

mean signal envelope fluctuations, which occur in much larger sparsely populated or 

suburban areas [5, 6, 19]. In general, LTF and STF are considered as superimposed and 

may be treated separately [19].  

    Ossanna [49] was the pioneer to characterize the statistical properties of the signal 

received by a mobile user, in terms of interference of incident and reflected waves. His 

model was better suited for describing fading occurring mainly in suburban areas. The 

LTF model is described by the average power loss due to distance and power loss due to 

reflection of signals from surfaces, which when measured in dB’s give rise to normal 

distributions which implies that the channel attenuation coefficient is log-normally 

distributed [19]. Furthermore, in mobile communications, the LTF channel models are 

also characterized by their special correlation characteristics which have been reported in 

[97-99]. 

    Clarke [50] introduces the first comprehensive scattering model describing STF 

occurring mainly in urban areas. An easy way to simulate Clarke’s model using a 

computer simulation is described in [114]. This model is later expanded to three-
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dimensional (3D) by Aulin [44]. An indoor STF is first introduced in [115]. Most of these 

STF models provide information on the frequency response of the channel, described by 

the Doppler power spectral density (DPSD). Aulin [44] presented a methodology to 

compute the Doppler power spectrum by computing the Fourier transform of the 

autocorrelation function of the channel impulse response with respect to time. A different 

approach, leading to the same Doppler power spectrum relation was presented by Gans 

[116]. These STF models suggest various distributions for the received signal amplitude 

such as Rayleigh, Ricean, or Nakagami.  

    The majority of research papers in this field use time invariant (static) models for the 

wireless channels [4-6, 19, 60]. In time invariant models, channel parameters are random 

but do not depend on time, and remain constant throughout the observation and 

estimation phase. This contrasts with time varying (TV) models, where the channel 

dynamics become TV stochastic processes [20, 21, 46-48]. TV models take into account 

the relative motion between transmitters and receivers and temporal variations of the 

propagating environment such as moving scatterers.  

    Mobile-to-mobile (or ad hoc) wireless networks comprise nodes that freely and 

dynamically self-organize into arbitrary and/or temporary network topology without any 

fixed infrastructure support [90]. They require direct communication between a mobile 

transmitter and a mobile receiver over a wireless medium. Such mobile-to-mobile 

communication systems differ from the conventional cellular systems, where one 

terminal, the base station, is stationary, and only the mobile station is moving. As a 

consequence, the statistical properties of mobile-to-mobile links are different from 

cellular ones [91], [92].  

    Copious ad hoc networking research exists on layers in the open system 

interconnection (OSI) model above the physical layer. However, neglecting the physical 

layer while modeling wireless environment is error prone and should be considered 

carefully [93]. The experimental results in [94] show that the factors at the physical layer 

not only affect the absolute performance of a protocol, but because their impact on 

different protocols is non-uniform, it can even change the relative ranking among 
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protocols for the same scenario. The importance of the physical layer is demonstrated in 

[95] by evaluating the Medium Access Control (MAC) performance. 

    Most of the research on mobile-to-mobile channel modeling, such as [52], [53], [91], 

[92], [96], deals mainly with deterministic wireless channel models. In these models the 

speed of nodes are assumed to be constant and the statistical characteristics of the 

received signal are assumed to be fixed in time. The Doppler power spectral density 

(DPSD) is then fixed from one observation instant to the next. But in reality, the 

propagation environment varies continuously due to mobility of the nodes at variable 

speeds causing network topology to dynamically change, the angle of arrival of the wave 

upon the receiver can vary continuously, and objects or scatters move in between the 

transmitter and the receiver resulting in appearance or disappearance of existing paths 

from one instant to the next. 

    The measurements provided in [117] are performed using both narrow-band and wide-

band signals in order to obtain both LTF and STF characteristics. Measurements using 

narrow-band signals provide information on the statistics of power loss as a function of 

distance and the Doppler spread. These measurements confirm that the power loss due to 

distance is log-normally distributed and provide values for the mean and variance. 

Measurements of the DPSD are made by transmitting a single tone frequency, and 

measuring the fluctuations on the received signal in time. On the other hand, wide-band 

measurements [117] are useful in determining the number of paths and the power-delay 

profile, which is a measure of the received power for different delays.  

    In this dissertation, new stochastic time varying models for LTF, STF, and ad hoc 

environments are presented. These models capture the spatio-temporal variations of 

wireless channels, which are due to the relative mobility of the receiver and/or transmitter 

and scatterers. The traditional models are special case of our developed models. 

 

1.2.2 Optimal Power Control 

Power control (PC) is important to improve performance of wireless communication 

systems. The benefits of power minimization are not just increased battery life, but also 
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increased overall network capacity and improved call quality. Users only need to expand 

sufficient power for acceptable reception as determined by their QoS specifications that is 

usually characterized by the signal to interference ratio (SIR) [22]. Power control 

algorithms (PCAs) can be classified as centralized and distributed. The centralized PCAs 

require global out-of-cell information available at base stations. The distributed PCAs 

require base stations to know only in-cell information, which can be easily obtained by 

local measurements. The power allocation problem has been studied extensively as an 

eigenvalue problem for non-negative matrices [12, 13], resulting in iterative PCAs that 

converge each user’s power to the minimum power [2, 9, 14-16, 23, 24], and as 

optimization-based approaches [7]. Much of this previous work deals with static time 

invariant channel models. The scheme introduced in [7, 11], whereby the statistics of the 

received SIR are used to allocate power, rather than an instantaneous SIR. Therefore, the 

allocation decisions can be made on a much slower time scale. Previous attempts at 

capacity determinations in CDMA systems have been based on a “load balancing” view 

of the PC problem [25]. This reflects an essentially static or at best quasi-static view of 

the PC problem, which largely ignores the dynamics of channel fading as well as user 

mobility. 

    Stochastic PCAs (SPCAs) that use noisy interference estimates have been introduced 

in [10], where conventional matched filter receivers are used. It is shown in [10] that the 

iterative SPCA, which uses stochastic approximations, converges to the optimal power 

vector under certain assumptions on the step-size sequence. These results were later 

extended to the cases where a nonlinear receiver or a decision feedback receiver is used 

[26]. However, the channel gains are assumed to be fixed ignoring the effects of time 

variations on the performance of the system. Other results that attempt to recognize the 

time-correlated nature of signals are proposed in [27], where blocking is defined via the 

sojourn time of global interference above a given level. Downlink PC for fading channels 

is studied in [28] by a heavy traffic limit where averaging methods are used. Stochastic 

control approach for uplink lognormal fading channels is studied in [29], in which a 

bounded rate power adjustment model is proposed. Recent work on dynamic PC with 

stochastic channel variation can be found in [30-32]. 
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    In this dissertation, various PCAs are developed based on the TV channel models. A 

centralized and deterministic PCA based on predictable power control strategies (PPCS) 

is first introduced. PPCS simply means updating the transmitted powers at discrete times 

and maintaining them fixed until the next power update begins. The interference or 

outage probability (OP) is used as a performance measure. A distributed version of this 

algorithm is derived. The latter helps in allowing autonomous execution at the node or 

link level, requiring minimal usage of network communication resources for control 

signaling. Subsequently, an iterative and distributed SPCA based on stochastic 

approximations, which requires less information than the SPCAs described in the 

literature, is proposed. It only requires the received SIR at its intended receiver, while the 

received matched filter output (received SIR) at its intended receiver and the channel gain 

between the transmitter and its intended receiver are required in the SPCA presented in 

[10, 33]. 

 

1.2.3 Location Based Services 

The problem of estimating the location and velocity of a mobile station (MS) has been 

the subject of much research work over the last few years. The current literature and 

standards in estimating the location and velocity are based mostly on time signal 

information, such as time difference of arrival (TDOA), enhanced observed time 

differences (E-OTD), observed time difference of arrival (OTDOA), global positioning 

system (GPS), etc., [34-38]. However, not all of these methods meet the necessary 

requirements imposed by specific services. In addition, most of them require new 

hardware since localization is not inherent in the current wireless systems, for instance, 

GPS demands a new receiver and TDOA, E-OTD, OTDOA require additional location 

measurement units in the network [39]. Adding extra hardware means extra cost for 

implementation, which can be reflected on both consumers and operators. Researchers 

have also suggested several MS location methods based on signal power measurements 

such as in [40] and [41], where a certain minimization problem is solved numerically to 

get an initial estimate of the MS position, and then a smoothing procedure such as linear 

regression [40], or the Kalman filter [41] are applied to obtain a more accurate estimate. 
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    In this dissertation, several MS tracking methods based on maximum likelihood 

estimation (MLE) [72], and recursive nonlinear Bayesian estimation (RNBE) algorithms 

such as the extended Kalman filter (EKF) [42], the particle filter (PF) [43], and the 

unscented particle filter (UPF) [75] are proposed. The MLE algorithm employs the 

average received power measurements based on the lognormal propagation channel 

model to obtain an initial MS location estimate [86]. These measurements are readily 

available through network measurement reports or radio measurements, in idle or active 

mode, for any MS unit in 2G and 3G cellular networks. The RNBE algorithms employ 

the instantaneous electric field measurements based on the 3D multipath channel model 

of Aulin [44] to account for multipath and non-line-of-sight (NLOS) characteristics of the 

wireless channel as well as the dynamicity of the MS. The received instantaneous electric 

field in this model is a nonlinear function of the position and velocity of the MS. The 

EKF approach is based on linearizing the nonlinear system model around the previous 

estimate, and therefore is very sensitive to the initial state. This motivates the use of the 

ML estimate of the MS location as an initial state to the EKF. Particle filtering 

approaches approximate the optimal solution numerically based on the physical model, 

rather than applying an optimal filter to an approximate model such as in the EKF. They 

provide general solutions to many problems where linearization and Gaussian 

approximations are intractable or yield low performance. The more nonlinear the model 

is or the more non-Gaussian the noise is, the more potential PFs have, especially in 

applications where computational power is rather cheap and the sampling rate is 

moderate. In this dissertation, particle filtering is implemented for the generic PF and the 

more recent UPF. 

    Aulin’s model in [44] postulates knowledge of the instantaneous received field at the 

MS, which is obtained through the circuitry of the mobile unit. The proposed RNBE 

algorithms take into account NLOS condition as well as multipath propagation 

environments. They require only one base station (BS) to estimate the MS location 

instead of at least three BSs as found in the literature [41], [86]. However, an initial MS 

location estimate that requires at least three BSs, such as the MLE and triangulation 

method, will improve the convergence of the RNBE filter. Particle filtering has been used 
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in several tracking wireless applications [62], [87]-[89], but the channel models used do 

not take into account the multipath properties of the wireless channel. To the best of our 

knowledge, the utilization of the PF and/or the UPF together with the classical wireless 

channel model to extract the MS location and velocity is new. The performance of the 

proposed algorithms is computed numerically and in the presence of parameters 

uncertainty. Numerical results indicate that the proposed UPF algorithm is highly 

accurate and superior to other approaches. 

 

1.3 Main Contributions 
The main contributions of our research can be described as follows: 
 

1. Development of dynamical wireless channel models, which capture the space-

variant and time-variant characteristics of cellular and ad hoc wireless networks. 

These models are based on state space and SDEs, and are in accordance with the 

physical principles of electromagnetic wave propagation; they are parametric and 

can describe diverse propagation environments. They allow the tools of system 

theory, identification, and estimation to be applied to this class of problems.  
 

2. Development of estimation and identification algorithms based on the EM 

algorithm and Kalman filtering to estimate the channel model parameters and 

states, respectively, from received signal measurements for LTF, STF, and ad hoc 

wireless networks. These filters use only the first and second order statistics and 

are recursive and therefore can be implemented on-line. The proposed models and 

estimation algorithms are tested using received signal level measurement data 

collected from cellular and ad hoc experimental setups. 
 

3. Development of PCAs based on the proposed models to compensate for path 

losses, multipath, Doppler spread, and interferences affecting the transmitted 

signal. Centralized, distributed, deterministic and stochastic PCAs are considered. 

The benefits of such PCAs include: Minimize power consumption and prolong 
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battery life of communicating nodes, mitigate interference and increase network 

capacity, and maintain link QoS by adapting to node movements in ad hoc 

networks and random channel variations by reducing the probability of outage. 
 

4. Development of MS location and velocity estimation algorithms based on the 3D 

multipath scattering channel model of Aulin. The choice of this model is to 

account for the multipath properties and NLOS of wireless networks. The 

instantaneous electric field is a nonlinear function of the position and velocity of 

the MS. The EKF, PF, and UPF are employed for the estimation process. These 

estimation algorithms are recursive and can be implemented on-line. They also 

support existing network infrastructure and channel signaling. 
 

5. Development of experimental and simulation set-ups demonstrating the flexibility 

and applicability of the proposed channel models in capturing the dynamics of 

diverse propagation environments, and determining the accuracy of the proposed 

estimation and identification algorithms in estimating the channel model 

parameters and states. The experimental and numerical results show the 

improvement in performance of the developed PCAs over the traditional PCAs, 

and signify the high accuracy and robustness of the proposed MS location and 

velocity estimation algorithm using particle filtering.  

 

1.4 Dissertation Outline 
This dissertation is structured as follows: 

    In Chapter 2, we present modeling of dynamical wireless channels for cellular and ad 

hoc networks.  Lognormal shadowing or LTF channel models are discussed first. New 

dynamical spatial and temporal models for the power path loss and attenuation coefficient 

of the channel are presented. These models use specific type of SDEs whose solution at 

every instant represents the correlation properties both in time and space of the channel 

and corresponds to the statistics of the static lognormal channel. After that, analysis of 

STF dynamical channel models describing the received signal envelope of each multipath 
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component is presented. These models are based on the temporal characteristics of the 

channel, namely the Doppler power spectral density. The dynamics of each multipath 

component are captured using stochastic state-state models. Finally, ad hoc dynamical 

channel models are presented in a similar way as the STF channel modeling, except that 

the deterministic ad hoc DPSD is considered. 

    Chapter 3 introduces the filter-based EM algorithm combined with the Kalman filter, 

to estimate the channel parameters and states from received signal measurements. These 

filters use only the first and second order statistics. The algorithm is recursive allowing 

the inphase and quadrature components and parameters to be estimated on-line from 

measurements. The proposed algorithm is tested using received signal level measurement 

data collected from experiments for both the cellular and ad hoc channels. 

    Chapter 4 presents several PCAs based on the dynamical models described in Chapter 

2.  The centralized deterministic PCA is introduced first. The solution of the optimal PC 

is obtained through path-wise optimization, which is solved by linear programming using 

PPCS. The PPCS are proven to be effectively applicable to such dynamical models for an 

optimal PC. The algorithm can be implemented using an iterative distributed scheme. A 

distributed SPCA based on stochastic approximations and which uses only measured SIR 

is introduced. Numerical results are provided to evaluate the performance of the proposed 

PCAs.  

    Chapter 5 presents MS location and velocity estimation algorithms based on particle 

filtering. First, we introduce the mathematical models employed for the MS location and 

velocity estimation algorithms, which are the lognormal channel model and the 3D 

multipath scattering model of Aulin. The received instantaneous electric field in Aulin’s 

model is a nonlinear function of the position and velocity of the MS. Thus, the MLE, the 

EKF, the PF, and the UPF are employed to estimate the MS location and velocity. A brief 

review of the theory of these algorithms is then introduced. Next, numerical results 

illustrating the accuracy and evaluating the robustness of the proposed estimation 

algorithms to uncertainties due to random variations in the channel parameters are 

presented. 
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    Finally, Chapter 6 provides concluding remarks and presents a discussion on the 

applicability of these models and algorithms in design and analysis. It also provides an 

opening to emanating future work. 
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Chapter 2 

 

Stochastic Wireless Channel Modeling 
 

 

The ultimate performance limits of any communication system are determined by the 

channel it operates in. Realistic channel models are thus of utmost importance for system 

design and testing. In this chapter, we propose new stochastic wireless channel models 

which capture both the space and time variations of wireless systems. The proposed 

channel models are based on stochastic differential equations (SDEs) driven by Brownian 

motions and represented in stochastic state space form. Long-term fading (LTF), short-

term fading (STF), and ad hoc wireless channel models are developed. These models are 

more realistic than the time invariant ones usually encountered in the literature, which do 

not capture and track the time varying characteristics in the environment. In contrast with 

the traditional models, the statistics of the proposed models are shown to be time varying, 

but converge in steady state to their static counterparts. Thus, the traditional models are 

special case of our models. Parts of the results presented here have been published in [21, 

46-48, 68, 105, 107, 109, 110]. 

 

2.1 The General TV Wireless Channel Impulse Response 
The impulse response of a wireless channel is typically characterized by time variations 

and time spreading [5]. Time variations are due to the relative motion between the 

transmitter and the receiver and temporal variations of the propagation environment. 

Time spreading is due to the fact that the emitted electromagnetic wave arrives at the 

receiver having undergone reflections, diffraction and scattering from various objects 

along the way, at different delay times. At the receiver, a random number of signal 

components, copies of a single emitted signal, arrive via different paths thus having 
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undergone different attenuation, phase shifts and time delays, all of which are random 

and time varying. This random number of signal components add vectorially giving rise 

to signal fluctuations, called multipath fading, which are responsible for the degradation 

of communication system performance. 

    The general time varying (TV) model of wireless fading channel is typically 

represented by the following multipath low-pass equivalent impulse response [5] 
 

( ) ( ) ( ) ( )( )
( )
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where ( );lC t τ  is the response of the channel at time t, due to an impulse applied at time 

t τ− , N(t) is the random number of multipath components impinging on the receiver, 

while the set ( ) ( ) ( ){ } ( )
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Φ Φ  are defined as the inphase and quadrature 

components of each path. Letting ( )ls t  be the low-pass equivalent representation of the 

transmitted signal, then the low-pass equivalent representation of the received signal is 

given by [5] 
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and the multipath TV band-pass impulse response is given by [5] 
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where cω  is the carrier frequency, and the band-pass representation of the received signal 

is given by 
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    In general, wireless communication networks are subject to time-spread (multipath), 

Doppler spread (time variations), path-loss, and interference seriously degrading their 

performance. In addition to the exponential power path-loss, wireless channels suffer 

from stochastic STF due to multipath, and stochastic LTF due to shadowing depending 

on the geographical area.  If the mobile happens to be in sparsely populated area with few 

buildings, vehicles, mountains etc., its signal will undergo LTF. Whereas in case the 

environment is filled with lots of objects like buildings, vehicles etc., then due to increase 

in scattering of the signal, the type of fading will be STF [5, 6, 19]. LTF is usually 

modeled by lognormal distributions and STF is modeled by Rayleigh, Ricean, or 

Nakagami distributions [19]. In general, LTF and STF are considered as superimposed 

and may be treated separately [19].  

    There exist many factors that define the randomness and the changing conditions with 

respect to time and/or space (stochastic) within the wireless medium. Static models do 

not take into account the time varying behavior of the channel and therefore do not 

represent a realistic picture of the communication medium. In static models, channel 

parameters are random but do not depend on time, and remain constant throughout the 

observation and estimation phase. Therefore, their statistics are time invariant. An 

alternative is to develop a new approach based on stochastic dynamical channel models 

to investigate the true behavior of the wireless communication networks. In TV models, 

the channel dynamics become TV stochastic processes [20, 21]. TV models take into 

account the relative motion between transmitters and receivers and temporal variations of 

the propagating environment such as moving scatterers. TV LTF, STF, and ad hoc 

dynamical channel models are considered in this chapter. The stochastic TV LTF channel 

modeling is discussed first in the next section. 
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2.2 Stochastic TV LTF Channel Modeling 
2.2.1 The traditional (Static) LTF Channel Model 

In this section we discuss the existing static models and introduce our approach on how 

to derive dynamical models. Before introducing the dynamical TV LTF channel model 

that captures both space and time variations, we first summarize and interpret the 

traditional lognormal shadowing model, which serves as a basis in the development of the 

subsequent TV model. The traditional (time invariant) power loss (PL) in dB for a given 

path is given by [19] 
 

0 0
0

( )[dB] : ( )[dB] 10 log ,dPL d PL d Z d d
d

α
⎛ ⎞

= + + ≥⎜ ⎟
⎝ ⎠

 (2.5)

 

where 0( )PL d  is the average PL in dB at a reference distance d0 from the transmitter, the 

distance d corresponds to the transmitter-receiver separation distance, α  is the path-loss 

exponent which depends on the propagating medium, and Z  is a zero-mean Gaussian 

distributed random variable, which represents the variability of PL due to numerous 

reflections and possibly any other uncertainty of the propagating environment from one 

observation instant to the next. The average value of the PL described in (2.5) is 
 

0 0
0

( )[dB] : ( )[dB] 10 log ,dPL d PL d d d
d

α
⎛ ⎞

= + ≥⎜ ⎟
⎝ ⎠

 (2.6)

 

    It can be seen in (2.5) and (2.6) that the statistics of the PL do not depend on time, and 

therefore these models treat PL as static (time invariant). They do not take into 

consideration the relative motion between the transmitter and the receiver, or variations 

of the propagating environment due to mobility.  

    Such spatial and time variations of the propagating environment are captured herein by 

modeling the PL and the envelope of the received signal as random processes that are 

functions of space and time. Moreover, and perhaps more importantly, traditional models 

do not take into consideration the correlation properties of the PL in space and at 
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different observation times. In reality, such correlation properties exist, and one way to 

model them is through stochastic processes, which obey specific type of SDEs. 

 

2.2.2 Stochastic LTF Channel Models 
In transforming the static model to a dynamical model, the random PL in (2.5) is relaxed 

to become a random process, denoted by { }
00,

( , )
t

X t
τ τ

τ
≥ ≥

, which is a function of both time 

t and space represented by the time-delay τ, where τ = d/c, d is the path length, c is the 

speed of light, τ0 = d0/c and d0 is the reference distance. The signal attenuation is defined 

by ( , )( , ) kX tS t e ττ , where ln(10) / 20k = −  [19]. For simplicity, we first introduce the TV 

lognormal model for a fixed transmitter-receiver separation distance d (or τ) that captures 

the temporal variations of the propagating environment. Next, we generalize it by 

allowing both t and τ  to vary as the transmitter and receiver, as well as scatters, are 

allowed to move at variable speeds. This induces spatio-temporal variations in the 

propagating environment. 

    When τ is fixed, the proposed model captures the dependence of { }
00,

( , )
t

X t
τ τ

τ
≥ ≥

 on 

time t. This corresponds to examining the time variations of the propagating environment 

for fixed transmitter-receiver separation distance. The process { }
00,

( , )
t

X t
τ τ

τ
≥ ≥

 represents 

how much power the signal looses at a particular location as a function of time. However, 

since for a fixed distance d, the PL should be a function of distance, we choose to 

generate { }
00,

( , )
t

X t
τ τ

τ
≥ ≥

 by a mean-reverting version of a general linear SDE given by 

[45-48] 
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2
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( , ) ( ( )[ ]; )t

dX t t t X t dt t dW t

X t PL d dB
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τ σ
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where ( ){ } 0t
W t

≥
 is the standard Brownian motion (zero drift, unit variance) which is 

assumed to be independent of ( )0 ,X t τ , ( ; )µ κN  denotes a Gaussian random variable 
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with mean µ  and variance κ , and ( )[ ]PL d dB  is the average path-loss in dB. The 

parameter ( ),tγ τ  models the average time varying PL at distance d from transmitter, 

which corresponds to ( )[ ]PL d dB  at d indexed by t. This model tracks and converges to 

this value as time progresses. The instantaneous drift ( )( , ) ( , ) ( , )t t X tβ τ γ τ τ−  represents 

the effect of pulling the process towards ( ),tγ τ , while ( ),tβ τ  represents the speed of 

adjustment towards this value. Finally, ( ),tδ τ  controls the instantaneous variance or 

volatility of the process for the instantaneous drift.  

    Let ( ){ } ( ) ( ) ( ){ }0 0
, , , , , ,

t t
t t t tθ τ β τ γ τ δ τ

≥ ≥
. If the random processes in { } 0

( , )
t

tθ τ
≥

 are 

measurable and bounded [101], then (2.7) has a unique solution for every 0( , )X t τ  given 

by [20, 46-48] 
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where 
0

0([ , ], ) ( , )
t

t

t t u duβ τ β τ∫ . Moreover, using Ito’s stochastic differential rule [101] 

on ( , )( , ) k X tS t e ττ =  the attenuation coefficient obeys the following SDE 
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    This model captures the temporal variations of the propagating environment as the 

random parameters ( ){ } 0
,

t
tθ τ

≥
 can be used to model the TV characteristics of the 

channel for the particular location τ. A different location is characterized by a different 

set of parameters ( ){ },tθ τ .  
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    Now, let us consider the special case when the parameters  ( ),θ τt  are time invariant, 

i.e., ( ) ( ) ( ) ( ){ }, ,θ τ β τ γ τ δ τ . In this case we need to show that the expected value of 

the dynamic PL ( ),X t τ , denoted by ( )[ , ]E X t τ , converges to the traditional average PL 

in (2.6). The solution of the SDE model in (2.7) for the time invariant case satisfies 
 

( ) ( )( ) ( )0 0

0

( ) ( ) ( )
0( , ) ( , ) ( ) 1 ( ) ( )

t
t t t t t u

t

X t e X t e e dW uβ τ β τ β ττ τ γ τ δ τ− − − − − −= + − + ∫  (2.10)

 

where for a given set of time invariant parameters ( )θ τ  and if the initial 0( , )X t τ  is 

Gaussian or fixed, then the distribution of ( ),X t τ  is Gaussian with mean and variance 

given by [101] 
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    Expression (2.11) of the mean and variance shows that the statistics of the 

communication channel vary as a function of both time t and space τ . As the observation 

instant, t, becomes large, the random process { }( , )X t τ  converges to a Gaussian random 

variable with mean ( ) ( )[dB]PL dγ τ =  and variance 2 ( ) / 2 ( )δ τ β τ . Therefore, the 

traditional lognormal model in (2.5) is a special case of the general TV LTF model in 

(2.7). Moreover, the distribution of ( , )( , ) k X tS t e ττ =  is lognormal with mean and variance 

given by 
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    Now, lets go back to the more general case in which ( ){ } 0
,

t
tθ τ

≥
 

( ) ( ) ( ){ } 0
, , , , ,

t
t t tβ τ γ τ δ τ

≥
. At a particular location τ, the mean of the PL process 

( )[ , ]E X t τ  is required to track the time variations of the average PL. This can be seen in 

the following example. 

 

Example 2.1: Let  
 

( ) 2 / 10( , ) 1 0.15 sint T
m

tt e
T
πγ τ γ τ −⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (2.13)

 

where ( )mγ τ  is the average PL at a specific location τ , T is the observation interval, 

( ),tδ τ = 1400 and ( ),tβ τ = 225000 (these parameters are determined from experimental 

measurements as will be shown at the end of this section), where for simplicity ( ),tδ τ  

and ( ),tβ τ  are chosen to be constant, but in general they are functions of both t and τ. 

The variations of ( ),X t τ  as a function of distance and time are represented in Figure 2.1. 

The temporal variations of the environment are captured by a TV ( ),tγ τ  which 

fluctuates around different average PLs mγ ’s, so that each curve corresponds to a 

different location. It is noticed in Figure 2.1 that as time progresses, the process ( ),X t τ  

is pulled towards ( ),tγ τ . The speed of adjustment towards ( ),tγ τ  can be controlled by 

choosing different values of ( ),tβ τ . In Chapter 3, we propose to recursively estimate the 

channel parameters directly from received signal measurements, using the EM algorithm 

combined with the Kalman filter. 

    Next, the general spatio-temporal lognormal model is introduced by generalizing the 

previous model to capture both space and time variations, using the fact that ( ),tγ τ  is a 

function of both t and τ. In this case, besides initial distances, the motion of mobiles, i.e., 

their velocities and directions of motion with respect to their base stations are important 

factors to evaluate TV PLs for the links involved. 
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Figure 2.1: Mean-reverting power path-loss as a function of t and τ, for the time varying 

( ),tγ τ  in Example 2.1. 
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    This can be illustrated in a simple way for the case of a single transmitter and a single 

receiver as follows: Consider a base station (receiver) at an initial distance d from a 

mobile (transmitter) that moves with a certain constant velocity υ  in a direction defined 

by an arbitrary constant angle θ , where θ  is the angle between the direction of motion of 

the mobile and the distance vector that starts from the receiver towards the transmitter as 

shown in Figure 2.2. At time t, the distance from the transmitter to the receiver, ( )d t , is 

given by 
 

2 2 2 2( ) ( cos ) ( sin ) ( ) 2 cosd t d t t d t dtυ θ υ θ υ υ θ= + + = + +  (2.14)

 

Therefore, the average PL at that location is given by 
 

0 0
0

( )( , ) ( ( ))[ ] ( )[ ] 10 log ( ), ( )d tt PL d t dB PL d dB t d t d
d

γ τ α ξ= = + + ≥  (2.15)

 

where 0( )PL d  is the average PL in dB at a reference distance d0, ( )d t  is defined in 

(2.14), α  is the path-loss coefficient and ( )tξ  is an arbitrary function of time 

representing additional temporal variations in the propagating environment like the 

appearance and disappearance of additional scatters. Now, suppose the mobile moves 

with arbitrary velocity, ( )( ), ( )x yv t v t , in the x-y plane, where ( )( ), ( )x yv t v t  denote the 

instantaneous velocity components in the x and y directions, respectively. 

 

 

 

 

 

 

Figure 2.2: A mobile (transmitter) at a distance d from a base station (receiver) moves 

with velocity υ  and in the direction given by θ  with respect to the transmitter-receiver 

axis. 

υ  

Tx

θ 

Rx d 

d(t) 
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The instantaneous distance from the receiver is thus described by 
 

( ) ( ) ( )2 2

0 0
( ) ( )

t t

x yd t d v t dt v t dt= + +∫ ∫  (2.16)

 

The parameter ( ),tγ τ  is used in the TV lognormal model (2.7) to obtain a general spatio-

temporal lognormal channel model. This is illustrated in the following example. 

 

Example 2.2: Consider a mobile moving at sinusoidal velocity with average speed 80 

Km/hr, initial distance 50d =  meters, 135θ =  degrees, and ( ) 0tξ = . Figure 2.3 shows the 

mean reverting PL ( ),X t τ , ( ),tγ τ , ( )[ , ]E X t τ , velocity of the mobile υ  and distance 

( )d t  as a function of time. It can be seen that the mean of ( ),X t τ  coincides with the 

average PL ( ),tγ τ  and tracks the movement of the mobile. Moreover, the variation of 

( ),X t τ  is due to uncertainties in the wireless channel such as movements of objects or 

obstacles between transmitter and receiver that are captured by the spatio-temporal 

lognormal model (2.7) and (2.15). Additional time variations of the propagating 

environment, while the mobile is moving, can be captured by using the TV PL coefficient 

( )tα  in (2.15) in addition to the TV parameters ( ),tβ τ  and ( ),tδ τ , or simply by ( )tξ . 

    In Chapter 3, we propose to recursively estimate the channel parameters as well as the 

TV PL directly from received signal measurements, using the EM algorithm combined 

with the Kalman filter. 

 

2.2.3 Spatial Correlation of the Stochastic LTF Model 
Now, we want to show that the spatial correlation of the lognormal mean-reverting model 

of (2.7) agrees with the experimental spatial correlation [97-99]. In particular, it is 

reported that the spatial correlation for shadow fading in mobile communications, which 

compares successfully with experimental data, can be modeled using an exponentially 

decreasing function multiplied by the variance of the PL process as follows 
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Figure 2.3: Mean-reverting power path-loss ( ),X t τ  for the TV LTF wireless channel 

model in Example 2.2. The mobile starts moving closer to the base station from point 50 

meters with an angle of 135 degrees and sinusoidal speed with average 80 km/hr (22.2 

m/s). 
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/ ( / )2 2( ) c cd X v X t
X X XCov t e eσ σ−∆ − ∆∆ =  (2.17)

 

where 2
Xσ  is the covariance of the PL process, ∆d is the distance between two 

consecutive samples, v is the velocity of the mobile. Xc is the effective correlation 

distance which is proportional to the density of the propagating environment 

corresponding to the distance when the normalized correlation falls to e−1 [99]. Here we 

show that our overall spacial dynamical model captures indeed these correlation 

properties. Without loss of generality, consider the particular case where the parameters 

( ){ } ( ) ( ) ( ){ }0 0
, , , ,

t t
t tθ τ β τ γ τ δ τ

≥ ≥
= .  

    Let [ ]( , ) ( , ) ( , )X t X t E X tτ τ τ− , then we have 

0

2
0

( , ) ( ) ( , ) ( ) ( ),
( , ) (0; )t

dX t X t dt dW t
X t

τ β τ τ δ τ

τ σ

= − +

=N
 (2.18)

 

The solution of (2.18) is given by [101] 
 

0 0

0

( )( ) ( )( )
0( , ) ( , ) ( ) ( )

t
t t u t

t

X t e X t e dW uβ τ β ττ τ δ τ− − −
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

∫  (2.19)

 

The mean of the process ( , )X t τ  is zero, and its covariance is given by [101] 
 

( )( )

( )0 0

0

2
2 ( ) 2 ( )( )( )( ) 2

( , ) ( , ) ( , ) ( , ) ( , )

( ) 1
2 ( )

β τ β τβ τ

τ τ τ τ

δ τσ
β τ

∧ −− +

⎡ ⎤⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

T

X

t t s tt s
t

Cov t s E X t E X t X s E X s

e e e
 (2.20)

 

where min( , )t s t s∧ . Letting s t t= + ∆ , then we have 

( )( ) ( ) ( )( )0 0

0

2
2 2 ( )2 ( )( , ) 1

2 ( )
t t t t t

tXCov t t t e eβ τ β τ β τδ τσ
β τ

− − − ∆ −⎡ ⎤
+ ∆ = + −⎢ ⎥

⎣ ⎦
 (2.21)

 

The covariance of the overall dynamical model indicates what proportion of the 

environment remains constant from one observation instant or location to the next, 

separated by the sampling interval. Since the mobile is in motion, it implies that this 
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corresponds to a spatial covariance. If we choose the variance of the initial condition such 

that 
0

2
2 ( )

2 ( )t
δ τσ
β τ

= , then we get 

 

0

2
( ) 2 ( )( )( , ) ( )

2 ( )
t t

tX XCov t t t e e Cov tβ τ β τδ τ σ
β τ

− ∆ − ∆+ ∆ = = ∆  (2.22)

 

Expression (2.22) indicates that the spatial covariance of our overall dynamical model 

corresponds to the reported experimental spatial covariance given by (2.17). The 

comparison further indicates that β(τ) is a characteristic of both the propagating 

environment and the separation distance of two consecutive samples, i.e., β(τ) is inversely 

proportional to the density of the propagating environment, and directly proportional to 

the sample separation distance. Note that the spatial covariance is an important 

characteristic for our dynamical mean-reverting shadow fading model since it can be 

clearly used in order to identify the random parameters {β(τ), δ(τ)}. This could be 

accomplished by using experimental data of ( )XCov t∆  in order to identify β(τ). The latter 

can be used further in conjunction with 
0

2
tσ  in order to identify δ(τ). Therefore, the 

parameters {β(τ), δ(τ)} can be estimated on-line from experimental measurements. 

Finally, we note that the variance of the initial condition of the PL process, 
0

2
tσ , should 

inevitably increase with distance, or equivalently δ(τ) should increase and/or β(τ)  

decrease. 

    The TV LTF channel model is used to generate the link gains for the proposed PCA 

which introduced in Chapter 4. The TV STF channel model is discussed in the next 

section. 

 

2.3 Stochastic TV STF Channel Modeling 
2.3.1 The Deterministic DPSD of Wireless Channels 
The traditional STF model is based on Ossanna [49] and later Clarke [50] and Aulin’s 

[44] developments. Aulin’s model is shown in Figure 2.4. This model assumes that at 
 



 28

 

 

 

 

 
 

 
 

Figure 2.4: Aulin’s 3D multipath channel model. 
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each point between a transmitter and a receiver, the total received wave consists of the 

superposition of N plane waves each having traveled via a different path.  The nth wave 

is characterized by its field vector En(t) given by [44] 
 

{ }( )( ) Re ( ) ( ) cos ( )sinn cj t j t
n n n c n cE t r t e e I t t Q t tω ω ωΦ= = −  (2.23)

 

where { }( ), ( )n nI t Q t  are the inphase and quadrature components for the nth wave, 

respectively, 2 2( ) ( ) ( )n n nr t I t Q t= +  is the signal envelope, 1( ) tan ( ( ) / ( ))n n nt Q t I t−Φ =  is 

the phase and cω  is the carrier frequency. The total field ( )E t  can be written as 
 

1
( ) ( ) ( ) cos ( )sinN

n c cn
E t E t I t t Q t tω ω

=
= = −∑  (2.24)

 

where { }( ), ( )I t Q t  are inphase and quadrature components of the total wave, respectively, 

with 
1

( ) ( )N
nn

I t I t
=

= ∑  and 
1

( ) ( )N
nn

Q t Q t
=

= ∑ . An application of the central limit theorem 

states that for large N, the inphase and quadrature components have Gaussian 

distributions 2( ; )x σN  [50]. The mean is { } { }E ( ) E ( )x I t Q t= =  and the variance is 

{ } { }2 Var ( ) Var ( )I t Q tσ = = . In the case where there is non-line-of-sight (NLOS), then 

the mean 0x =  and the received signal amplitude has Rayleigh distribution. In the 

presence of line-of-sight (LOS) component, 0x ≠  and the received signal is Ricean 

distributed. Also, it is assumed that ( )I t  and ( )Q t  are uncorrelated and thus independent 

since they are Gaussian distributed [44]. 

    Dependent on mobile speed, wavelength, and angle of incidence, the Doppler 

frequency shifts on the multipath rays give rise to a Doppler power spectral density 

(DPSD). The DPSD is defined as the Fourier transform of the autocorrelation function of 

the channel, and represents the amount of power at various frequencies. Define { },n nα β  

as the direction of the incident wave onto the receiver as illustrated in Figure 2.4. For the 

case of nα  is uniformly distributed and nβ  is fixed, the deterministic DPSD is given by 

[4] 
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( )

0
2

1/ ,
4

1

0 , otherwise

m
m

m

E f f f
fS f
f

π
⎧ <⎪

⎛ ⎞⎪= −⎨ ⎜ ⎟
⎝ ⎠⎪

⎪
⎩

 (2.25)

 

where mf  is the maximum Doppler frequency, and { } { }0 / 2 Var ( ) Var ( )E I t Q t= = . A 

more complex, but realistic, expression for the DPSD, which assumes nβ  has probability 

density function cos( ) for ,
2sin 2m

m

pβ
β πβ β β
β

= ≤ ≤  and for small angles mβ , is given by 

( )
( )

0

22
10

2

0,

( ) , cos
4 sin

2cos 1 /
sin , cos

4 sin 2 1 /

m

m m m
m m

m m
m m

m m m

f f
ES f f f f

f

f fE f f
f f f

β
β

βπ β
π β

−

⎧
⎪
⎪ >⎪
⎪

= ≤ ≤⎨
⎪
⎪ ⎡ ⎤⎛ ⎞− −⎪ ⎢ ⎥− <⎜ ⎟⎪ ⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦⎩

 (2.26) 

 

Expression (2.26) is illustrated in Figure 2.5 for different values of mobile speed. Notice 

that the direction of motion does not play a role because of the uniform scattering 

assumption, and that the DPSDs described in (2.25) and (2.26) are band limited. 

    The DPSD is the fundamental channel characteristic on which STF dynamical models 

are based on. The approach presented here is based on traditional system theory using the 

state space approach [100] while capturing the spectral characteristics of the channel. The 

main idea in constructing dynamical models for STF channels is to factorize the 

deterministic DPSD into an approximate nth order even transfer function, and then use a 

stochastic realization [101] to obtain a state space representation for the inphase and 

quadrature components. 

    The wireless channel is considered as a dynamical system for which the input-output 

map is described in (2.4). In practice, one obtains from measurements the power spectral 

density of the output, and with the knowledge of the power spectral density of the input 

the power spectral density of the transfer function (wireless channel) can be deduced as 
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( ) ( ) ( )2
yy xxS f H f S f=  (2.27)

 

where ( )x t  is a random process with power spectral density ( )xxS f  representing the 

input signal to the channel, ( )y t  is a random process with power spectral density ( )yyS f  

representing the output signal of the channel, and ( )H f  is the frequency response of the 

channel, which is the Fourier transform of the impulse response of the channel. 

    In general, in order to identify the random process associated with ( )S f  in (2.25) or 

(2.26) in the form of an SDE, we need to find a transfer function, ( )H f  whose 

magnitude square equals ( )S f , i.e. ( ) ( ) 2
S f H f= . This is equivalent to 

( ) ( ) ( )S s H s H s= − , where 2s j fπ= . That is, we need to factorize the DPSD. This is an 

old problem which had been studied by Paley and Wiener [51] and is reformulated here 

as follows: 

Given a non-negative integrable function, ( )S f , such that the Paley-Wiener condition 

( )
( )2

log

1

S f
df

f
∞

−∞

⎡ ⎤
⎢ ⎥ < ∞

+⎢ ⎥⎣ ⎦
∫  is satisfied, then there exists a causal, stable, minimum-phase, 

( )H f , such that ( ) ( )2
H f S f= , implying that ( )S f  is factorizable, namely, 

( ) ( ) ( )S s H s H s= − . The factor H(s) represents the frequency response of a causal, 

stable, and minimum-phase system, which, if driven by the process x(t), the power 

spectral density of its output will be given by (2.27). It can be seen that the Paley-Wiener 

condition is not satisfied when ( )S f  is band limited, which is the case of wireless links. 

Therefore, the deterministic DPSD has to be first approximated by a rational transfer 

function, say ( )S f , and is discussed next. 

 

2.3.2 Approximating the Deterministic DPSD 
A number of rational approximation methods [56] can be used to approximate the 

deterministic DPSD, the choice of which depends on the complexity and the required 
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accuracy. The order of approximation dictates how close the approximate curve would be 

to the actual one. Higher order approximations capture higher order dynamics, and 

provide better approximations for the DPSD, however computations become more 

involved. In this section, we consider a simple approximating method which uses a 4th 

order stable, minimum phase, real, rational approximate transfer function. In Section 2.4, 

we consider the complex cepstrum approximation algorithm [54], which is based on the 

Gauss-Newton method for iterative search, and is more accurate but requires more 

computations. 

    In the simple approximating method, a 4th order even transfer function ( )S s , is used to 

approximate the deterministic cellular DPSD, ( )S s . The approximate function 

( ) ( ) ( )S s H s H s= −  is given by 

 

2

4 2 2 2 4 2 2( ) , ( )
2 (1 2 ) 2n n n n

K KS s H s
s s s sω ζ ω ζω ω

= =
+ − + + +

 (2.28)

 

where ( )S s  is the approximation of ( )S s . Equation (2.28) has three arbitrary parameters 

{ }, ,n Kζ ω , which can be adjusted such that the approximate curve coincides with the 

actual curve at different points. The reason for presenting 4th order approximation of the 

DPSD is that we can compute explicit expressions for the constants { }, ,n Kζ ω  as 

functions of specific points on the data-graphs of the DPSD. In fact, if the approximate 

density ( )S f  coincides with the exact density ( )S f  at 0f =  and maxf f= , then the 

arbitrary parameters { }, ,n Kζ ω  are computed explicitly as 

2max
2

max

21 (0)1 1 , , (0)
2 ( ) 1 2

n n
fS K S

S f
πζ ω ω

ζ

⎛ ⎞
= − − = =⎜ ⎟⎜ ⎟ −⎝ ⎠

 (2.29)

 

Figure 2.6 shows the DPSD, ( )S f , and its approximation ( )S f  via a 4th order even 

function. 
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Figure 2.6: DPSD, ( )DS f , and its approximation 2( ) ( )S H jω ω=  via a 4th order transfer 
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2.3.3 Stochastic STF Channel Models 
A stochastic realization is used here to obtain a state space representation for the inphase 

and quadrature components [101]. The SDE, which corresponds to ( )H s  in (2.28) is 

given by 

2 2( ) 2 ( ) ( ) ( ), (0), (0) aregivenn nd x t dx t x t dt KdW t x xζω ω+ + =  (2.30)
 

where { } 0
( )

t
dW t

≥
 is a white-noise process. Equation (2.30) can be rewritten in terms of 

inphase and quadrature components as 
 

2 2

2 2

( ) 2 ( ) ( ) ( ), (0), (0) aregiven

( ) 2 ( ) ( ) ( ), (0), (0) aregiven
I n I n I I I I

Q n Q n Q Q Q Q

d x t dx t x t dt KdW t x x

d x t dx t x t dt KdW t x x

ζω ω

ζω ω

+ + =

+ + =
 (2.31)

 

where { } 0
( )I t

dW t
≥

 and { }
0

( )Q t
dW t

≥
 are two independent and identically distributed (i.i.d.) 

white Gaussian noises. 

    Several stochastic realizations [101] can be used to obtain a state-space representation 

for the in-phase and quadrature components of STF channel models. For example, the 

stochastic observable canonical form (OCF) realization [100] can be used to realize 

(2.31) for the inphase and quadrature components for the jth path as 
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where ( )jI t  and ( )jQ t  corresponds to the inphase and quadrature components of the jth 

path respectively, ( ){ }
0

I
j t

W t
≥

 and ( ){ }
0

Q
j t

W t
≥

 are independent standard Brownian 

motions, which correspond to the inphase and quadrature components of the jth path 

respectively, the parameters { }, ,n Kζ ω  are obtained from approximating the DPSD, 

( )I
jf t  and ( )Q

jf t  are arbitrary functions representing the LOS of the inphase and 

quadrature components respectively, characterizing further dynamic variations in the 

environment.  

    Let us denote ( ) ( ){ },I QX t X t  the state vectors for the inphase and quadrature 

components, respectively, and ( ) ( ){ },I t Q t  the inphase and quadrature components of 

the channel, then (2.32) for the jth path can be written in compact form as 
 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

0 0
0 0

0
0

I I II I

Q QQ Q Q

I II

Q Q Q

dX t X t dW tA B
dt

A BdX t X t dW t

X t f tI t C
C X t f tQ t
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= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.33)

 

where  
 

[ ]2

0 1 0
, , 1 0

2I Q I Q I Q
n n n

A A B B C C
Kω ξ ω

⎡ ⎤ ⎡ ⎤
= = = = = =⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

 (2.34)

 

( ) ( ){ }
0

,
≥I Q t

W t W t  are independent standard Brownian motions which are independent of 

the initial random variables ( )0IX  and ( )0QX , and ( ) ( ){ }, ; 0 ≤ ≤I Qf s f s s t  are random 

processes representing the inphase and quadrature LOS components, respectively. The 

band-pass representation of the received signal corresponding to the jth path is given as: 
 

( ) ( ) ( )( ) ( ) ( )( ) ( )cos sin ( )I I I c Q Q Q c l jy t C X t f t t C X t f t t s t v tω ω τ⎡ ⎤= + − + − +⎣ ⎦  (2.35)
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where ( )v t  is the measurement noise. As the DPSD varies from one instant to the next, 

the channel parameters { }, ,n Kζ ω  also vary in time, and have to be estimated on-line 

from time domain measurements. Without loss of generality, we consider the case of flat 

fading, in which the mobile-to-mobile channel has purely multiplicative effect on the 

signal and the multipath components are not resolvable, and can be considered as a single 

path [5]. The frequency selective fading case can be handled by including multiple time-

delayed echoes. In this case, the delay spread has to be estimated. A sounding device is 

usually dedicated to estimate the time delay of each discrete path such as Rake receiver 

[60]. Following the state space representation in (2.33) and the band pass representation 

of the received signal in (2.35), the fading channel can be represented using a general 

stochastic state space representation of the form 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

dX t A t X t dt B t dW t

y t C t X t D t v t

= +

= +
 (2.36)

 

where 
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⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎣ ⎦

 (2.37)

 

In this case, ( )y t  represents the received signal measurements, ( )X t  is the state variable 

of the inphase and quadrature components, and ( )v t  is the measurement noise. 

    Time domain simulation of STF channels can be performed by passing two 

independent white noise processes through two identical filters, ( )H s , obtained from the 

factorization of the deterministic DPSD, one for the inphase and the other for the 

quadrature component [19], and realized in their state-space form as described in (2.33) 

and (2.34).  
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Example 2.3: Consider a flat fading wireless channel with the following parameters: 

900MHz=cf , 80 km/h=v , o10β =m , and ( ) ( ) 0= =I Q
j jf t f t . Time domain simulation 

of the inphase and quadrature components, attenuation coefficient, phase angle, input 

signal, and received signal are shown in Figures 2.7-2.9. The inphase and quadrature 

components have been produced using (2.33) and (2.34), while the received signal is 

reproduced using (2.35). The simulation of the dynamical STF channel is performed 

using Simulink in Matlab [118]. In the next chapter, we propose to estimate the channel 

parameters as well as the inphase and quadrature components directly from received 

signal measurements, using the EM algorithm together with the Kalman filter. 

 

2.3.4 Solution to the Stochastic State Space Model 

The stochastic time varying state space model described in (2.36) has a solution given by 

[101, 102] 
 

( ) ( ) ( ) ( ) ( ) ( )
0

1
0 0 0, ,

t

L L L L L L
t

X t t t X t u t B u dW u−
⎡ ⎤

= Φ + Φ⎢ ⎥
⎢ ⎥⎣ ⎦

∫  (2.38)

 

where L = I or Q, ( )0,L t tΦ  is the fundamental matrix, and ( ) ( ) ( )0 0, ,L L Lt t A t t tΦ = Φ  

with initial condition ( )0 0,L t t IΦ = , where I is the identity matrix. 

A simple computation shows that the mean of ( )LX t  is given by [101] 

( ) ( ) ( )0 0,L L LE X t t t E X t⎡ ⎤ ⎡ ⎤= Φ⎣ ⎦ ⎣ ⎦  (2.39)
 

and the covariance matrix of ( )LX t  is [101] 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
0

1 1
0 0 0 0 0, , , ,

t
TT T

L L L L L L L L
t

t t t Var X t u t B u B u u t du t t− −
⎡ ⎤

⎡ ⎤Σ = Φ + Φ Φ Φ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

∫ (2.40) 

 

A simple differentiation of expression (2.40) shows that the covariance matrix ( )L tΣ  

satisfies the Riccati equation 
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Figure 2.7: Inphase and quadrature components, attenuation coefficient, and phase angle 

of the STF wireless channel in Example 2.3. 
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Figure 2.8: Attenuation coefficient in absolute units and in dB’s for the STF wireless 

channel in Example 2.3. 
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Figure 2.9: Input signal, ( )ls t , and the corresponding received signal, ( )y t , for flat slow 

fading (top) and flat fast fading conditions (bottom). 
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( ) ( ) ( ) ( ) ( ) ( ) ( )T T
L L Lt A t t t A t B t B tΣ = Σ + Σ +  (2.41)

 

For the time invariant case, ( )L LA t A=  and ( ) ,L LB t B=  expressions (2.38)-(2.40) 

simplify to 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0

0

0 0

0

0

0

0

L L

L

T T
L L L L

t
A t t A t u

L L L L
t

A t t
L L

t
A t t A t t A t u A t uT

L L L L
t

X t e X t e B dW u

E X t e E X t

t e Var X t e e B B e du

− −

−

− − − −

= +

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤Σ = +⎣ ⎦

∫

∫

 (2.42)

 

It can be seen from (2.39) and (2.40) that the mean and variance of the inphase and 

quadrature components are functions of time. Note that the statistics of the inphase and 

quadrature components, and therefore the statistics of the STF channel, are times varying. 

Therefore, these stochastic state space models reflect the TV characteristics of the STF 

channel. 

    As described above, the channel parameters are obtained from approximating the 

deterministic DPSD. However, in reality one can not have access to the DPSD on-line 

and at all times during the estimation process. In the next chapter, we propose to estimate 

the channel parameters as well as the inphase and quadrature components directly from 

received signal measurements, which are usually available or easy to obtain in any 

wireless network. The EM algorithm and Kalman filtering are employed in the channel 

parameter and state estimation, respectively. This estimation algorithm is described in 

Chapter 3.  The TV STF channel model is used to generate the link gains for the proposed 

PCA which is introduced in Chapter 4. Following the same procedure in developing the 

STF channel models, the TV stochastic ad hoc channel models are developed in the next 

section. 
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2.4 Stochastic TV Ad Hoc Channel Modeling 
2.4.1 The Deterministic DPSD of Ad Hoc Channels 

Dependent on mobile speed, wavelength, and angle of incidence, the Doppler frequency 

shifts on the multipath rays give rise to a DPSD. The cellular DPSD for a received fading 

carrier of frequency fc is given by [4] 
 

( )
12

1 1

1 ,

1
/

0 , otherwise

c

c

f f f
S f f f

pG f fπ

⎧ − <⎪
⎛ ⎞⎪ −= −⎨ ⎜ ⎟
⎝ ⎠⎪

⎪
⎩

 (2.43)

 

where 1f  is the maximum Doppler frequency of the mobile , p is the average power 

received by an isotropic antenna, and G is the gain of the receiving antenna. For a 

mobile-to-mobile (or ad hoc) link, with 1f  and 2f  as the sender and receiver’s maximum 

Doppler frequencies, respectively, the degree of double mobility, denoted by α  is 

defined by ( ) ( )1 2 1 2min , / max ,f f f fα ⎡ ⎤= ⎣ ⎦ , so 0 1α≤ ≤ , where 1α =  corresponds to a 

full double mobility and 0α =  to a single mobility like the cellular link, implying that 

cellular channels are a special case of mobile-to-mobile channels. The corresponding 

deterministic mobile-to-mobile DPSD is given by [52, 53, 91, 92, 96] 
 

( )
( )

( ) ( )
2

2 2

1K 1 , 1
12

/
0 , otherwise

c
c m

m
m

f f f f fS f
f

pG f

α α
αα

π α

⎧ ⎛ ⎞⎛ ⎞−+⎪ ⎜ ⎟− − < +⎜ ⎟⎪ ⎜ ⎟⎜ ⎟= +⎨ ⎜ ⎟⎝ ⎠⎝ ⎠⎪
⎪⎩

 (2.44)

 

where ( )K .  is the complete elliptic integral of the first kind, and ( )1 2max ,mf f f= . 

Figure 2.10 shows the deterministic mobile-to-mobile DPSDs for different values of α’s. 

Thus, a generalized two-dimensional (2D) DPSD has been found where the U-shaped 

spectrum of cellular channels is a special case. 
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Figure 2.10: Ad hoc DPSD for different values of 'sα , with parameters 10, 1,cf f= =  
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    Here, we follow the same procedure in deriving the stochastic STF channel models in 

Section 2.3. The deterministic ad hoc DPSD is first factorized into an approximate nth 

order even transfer function, and then use a stochastic realization [101] to obtain a state 

space representation for inphase and quadrature components. The complex cepstrum 

algorithm [54] is used to approximate the ad hoc DPSD. This algorithm is discussed next.  

 

2.4.2 Approximating the Deterministic Ad Hoc DPSD 

Since the ad hoc DPSD is more complicated than the cellular one, we propose to use a 

more complex and accurate approximating method: The complex cepstrum algorithm 

[54]. It uses several measured points of the DPSD instead of just three points as in the 

simple method (described in Section 2.3.2). It can be explained briefly as follows: On a 

log-log scale, the magnitude data is interpolated linearly, with a very fine discretization. 

Then, using the complex cepstrum algorithm [54], the phase, associated with a stable, 

minimum phase, real, rational transfer function with the same magnitude as the 

magnitude data is generated.  

    With the new phase data and the input magnitude data, a real rational transfer function 

can be found by using the Gauss-Newton method for iterative search [56], which is used 

to generate a stable, minimum phase, real rational transfer function, denoted by ( )H s , to 

identify the best model from the data of ( )H f  as 

 

( ) ( ) ( )
2

1,
min l

k k kkb a
wt f H f H f

=
−∑  (2.45)

 

where 
 

( )
1

1 1 0
1

1 1 0

...
...

m
m

m m
m

b s b s bH s
s a s a s a

−
−

−
−

+ + +
=

+ + + +
 (2.46)

 

{ }1 0,...,mb b b−= , { }1 0,...,ma a a−= , ( )wt f  is the weight function, and l is the number of 

frequency points. Several variants have been suggested in the literature, where the 



 45

weighting function gives less attention to high frequencies [56]. This algorithm is based 

on Levi [55]. Figure 2.11 shows the DPSD, ( )S f , and its approximation ( )S f  via 

different orders using complex cepstrum algorithm. Higher order of ( )S f , better 

approximation obtained. It can be seen that approximating by a 4th order transfer function 

gives very good results.  

    Figure 2.12(a) and 2.12(b) show the DPSD, ( )S f , and its approximation ( )S f  using 

the complex cepstrum and simple approximation methods, respectively, for different 

values of 'sα  via 4th order even function. It can be noticed that the former gives better 

approximation than the latter; since it employs all measured points of the DPSD instead 

of just three points in the simple method. 

 

2.4.3 Stochastic Ad Hoc Channel Models 
The same procedure as the cellular case is used to represent mobile-to-mobile channels. 

The stochastic OCF [100] is used to realize (2.46) for the inphase and quadrature 

components as 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

, ,

,

, ,

,

I
I j I I j I j

I
j I I j j

Q
Q j Q Q j Q j

Q
j Q Q j j

dX t A X t dt B dW t

I t C X t f t

dX t A X t dt B dW t

Q t C X t f t

= +

= +

= +

= +

 (2.47)

 

where 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ]

1 2 1 2
, , , , , , , ,

1

1

0 1 2 1 0

, , , , , , ,

0 1 0 0
0 0 1 0

, , 1 0 0
0 0 0 1

T Tm m
I j I j I j I j Q j Q j Q j Q j

m

I Q I Q I Q

m

X t X t X t X t X t X t X t X t

b

A A B B C C
b

a a a a b

−

−

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = = = = =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

… …

(2.48) 
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Figure 2.11: DPSD, ( )S f , and its approximations, ( )S f , using complex cepstrum 

algorithm for different orders of ( )S f . 
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Figure 2.12: DPSD, ( )S f , and its approximation, ( )S f , via 4th order function for 

different α’s using (a) the complex cepstrum, and (b) the simple approximation methods.  



 48

, ( )I jX t  and , ( )Q jX t  are state vectors of the inphase and quadrature components of the jth 

path. ( )jI t  and ( )jQ t  corresponds to the inphase and quadrature components of the jth 

path respectively, ( ){ }
0

I
j t

W t
≥

 and ( ){ }
0

Q
j t

W t
≥

 are independent standard Brownian 

motions, which correspond to the inphase and quadrature components of the jth path 

respectively, the parameters { }1 0 1 0,..., , ,...,m ma a b b− −  are obtained from the approximation 

of the ad hoc DPSD, and ( )I
jf t  and ( )Q

jf t  are arbitrary functions representing the LOS 

of the inphase and quadrature components respectively, characterizing further dynamic 

variations in the environment. Equation (2.47) for the inphase and quadrature 

components of the jth path can be described as in (2.33), and the solution of the ad hoc 

state space model in (2.47) is similar to the one for STF model described in Section 2.3.4. 

The mean and variance of the ad hoc inphase and quadrature components have the same 

form as the ones in the STF case in (2.39) and (2.40), which show that the statistics are 

functions of time. The general TV state space representation for the ad hoc channel 

model is similar to the STF state space representation in (2.36) and (2.37). 

    As the DPSD varies from one instant to the next, the channel parameters 

{ }1 0 1 0,..., , ,...,m ma a b b− −  also vary in time, and have to be estimated on-line from time 

domain measurements.  

 

Example 2.4: Consider a mobile-to-mobile channel with parameters 

1 36km/hr (10m/s)v =  and 2 24km/hr (6.6m/s)v = , in which 0.66α = . Figure 2.13 shows 

time domain simulation of the inphase and quadrature components, and the attenuation 

coefficient. The inphase and quadrature components have been produced using (2.47) and 

(2.48), while the received signal is reproduced using (2.35). In Figure 2.13 Gauss-

Newton method is used to approximate the deterministic DPSD with 4th order transfer 

function. The simulation is performed using Simulink in Matlab [118].  
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Figure 2.13: Inphase and quadrature components { }( ), ( )I t Q t , and the attenuation 

coefficient 2 2( ) ( ) ( )n n nr t I t Q t= + , for a mobile-to-mobile channel with 0.66α = . 
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2.5 Link Performance for Cellular and Ad Hoc Channels 
Now, we want to compare the performance of mobile-to-mobile link with a cellular link.    

For simplicity we will consider the case of flat fading, in which the ad hoc channel has 

purely multiplicative effect on the signal and the multipath components are not 

resolvable. Thus it can be considered as a single path [5]. We consider BPSK is the 

modulation technique and the carrier frequency is 900MHzcf = . We test 10000 frames 

of P = 100 bits each. We assume mobile nodes are vehicles, with the constraint that the 

average speed over the mobile nodes is 30 km/hr. This implies 1 2 60km/hrv v+ = , thus 

for a mobile-to-mobile link with α = 0 we get 1 60km/hrv =  and 2 0v = . The cellular case 

is defined as the scenario where a link connects a mobile node with speed 30 km/hr to a 

permanently stationary node, which is the base station. Thus, there is only one mobile 

node, and the constraint is satisfied. We consider the NLOS case ( 0)I Qf f= = , which 

represents an environment with large obstructions.  

    The state space models developed in (2.32) and (2.47) are used for simulating the 

inphase and quadrature components for the cellular and ad hoc channels, respectively. 

The complex cepstrum approximation method is used to approximate the ad hoc DPSD 

with 4th order stable, minimum phase, real, and rational transfer function. The received 

signal is reproduced using (2.35). Figure 2.14 shows the attenuation coefficient, 

( ) ( ) ( )2 2r t I t Q t= + ,  for both the cellular case and the worst-case mobile-to-mobile 

case ( 0)α = . It can be observed that a mobile-to-mobile link suffers from faster fading 

by noting the higher frequency components in the worst-case mobile-to-mobile link. Also 

it can be noticed that deep fading (envelope less than –12 dB) on the mobile-to-mobile 

link occurs more frequently and less bursty (48 % of the time for the mobile-to-mobile 

link and 32 % for the cellular link). Therefore, the increased Doppler spread due to 

double mobility tends to smear the errors out, causing higher frame error rates. 

    Consider the data rate given by / 5 Kbpsb cR P T= =  which is chosen such that the 

coherence time Tc equals the time it takes to send exactly one frame of length P bits, a 

condition where variation  in  Doppler  spread greatly impacts the frame error rate (FER). 
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Figure 2.14: Rayleigh attenuation coefficient for cellular link and worst-case mobile-to-

mobile link. 
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Figure 2.15 shows the link performance for 10000 frames of 100 bits each. It is clear that 

the mobile-to-mobile link is worse than the cellular link, but the performance gap 

decreases as 1α → . This agrees with the main conclusion of [53], that an increase in 

degree of double mobility mitigates fading by lowering the Doppler spread. The gain in 

performance is nonlinear with α , as the majority of gain is from α  = 0 to α  = 0.5. 

Intuitively, it makes sense that link performance improves as the degree of double 

mobility increases, since mobility in the network becomes distributed uniformly over the 

nodes in a kind of “equilibrium”.  
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Figure 2.15: FER results for Rayleigh mobile-to-mobile link for different α’s compared 

with cellular link. 
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Chapter 3 

 

Wireless Channel Estimation and 
Identification via the Expectation 
Maximization Algorithm and Kalman 
Filtering 
 

 

 

Since the developed models are based on state space representations, we propose to 

estimate the channel parameters and states directly from received signal level 

measurements, which are usually available or easy to obtain in any wireless network. A 

filter-based expectation maximization (EM) algorithm [79, 80] and Kalman filter [81] are 

employed in the estimation process. These filters use only the first and second order 

statistics and are recursive and therefore can be implemented on-line. The standard EM 

algorithm [82] has a wide range of applications, for example, in the estimation of speech 

signals in acoustic environments [83], in localization of narrowband sources [84] and in 

speech coding [85] to cite a few. The proposed models and estimation algorithms are 

tested using received signal level measurement data collected from cellular and ad hoc 

experimental setups. Parts of the results presented here have been published in [105, 107, 

110]. 
 

3.1 The EM Together with the Kalman Filter 
Consider a discrete-time state space representation given by 
 

1t t t t t

t t t t t

x A x B w
y C x D v

+ = +
= +

 (3.1)
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where n
tx ∈R  is a state vector, d

ty ∈R  is a measurement vector, m
tw ∈R  is a state 

noise, and d
tv ∈R  is a measurement noise. The noise processes tw  and tv  are assumed 

to be independent zero mean and unit variance Gaussian processes. 

    The system parameters { , , , }t t t t tA B C Dθ =  as well as the system states tx  are unknown 

and can be estimated through received signal measurement data, 1 2{ , ,..., }N NY y y y= . The 

parameters are identified using a filter-based EM algorithm and the channel states are 

estimated using the Kalman filter. The Kalman filter is introduced next. 

 

3.1.1 Channel State Estimation: The Kalman Filter 

The Kalman filter estimates the channel states tx  for given system parameter tθ  and 

measurements tY . It is described by the following equations [81, 102] 
 

( )2
| 1| 1 | 1| 1

| 1 1| 1 0|0 0

ˆ ˆ ˆ

ˆ ˆ ˆ,

T
t t t t t t t t t t t t t t

t t t t t

x A x P C D y C A x

x A x x m

−
− − − −

− − −

= + −

= =
 (3.2)

 

where 0,1,2,...,t N= , and |t tP  is given by 
 

1 1 2
| 1| 1

1 2 2 2 2
| |

2
| 1 1| 1

T
t t t t t t t

T T
t t t t t t t t t t t

T
t t t t t t t

P P A B A

P C D C B B P A B

P A P A B

− − −
− −

− − − − −

− − −

= +

= + −

= +

 (3.3)

 

where 2 T
t t tB B B= , and 2 T

t t tD D D= . The channel parameters { , , , }t t t t tA B C Dθ =  are 

estimated using the EM algorithm which is introduced next. 
 

3.1.2 Channel Parameter Estimation: The EM Algorithm 

The filter-based EM algorithm uses a bank of Kalman filters to yield a maximum 

likelihood (ML) parameter estimate of the Gaussian state space model [79]. The EM 

algorithm is an iterative numerical algorithm for computing the ML estimate. Each 

iteration consists of two steps: the expectation and the maximization step [79, 80, 82]. 

The filtered expectation step only uses filters for the first and second order statistics. The 
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memory costs are modest and the filters are decoupled and hence easy to be implemented 

in parallel on a multi-processor system [79]. The algorithm yields parameter estimates 

with nondecreasing values of the likelihood function, and converges under mild 

assumptions [82].   

    Let { , , , }t t t t tA B C Dθ =  denote the system parameters in (3.1), 0P  denotes a fixed 

probability measure; and { };
t tPθ θ ∈Θ  denotes a family of probability measures induced 

by the system parameters tθ . If the original model is a white noise sequence, then 

{ };
t tPθ θ ∈Θ  is absolutely continuous with respect to 0P  [80]. Moreover, it can be shown 

that under 0P  we have 

1
0 : t t

t t

x w
P

y v
+ =⎧

⎨ =⎩
 (3.4)

 

The EM algorithm computes the ML estimate of the system parameters tθ , given the data 

tY . Specifically, each iteration of the EM algorithm consists of two steps: The expectation 

step and the maximization step. 

    The expectation step evaluates the conditional expectation of the log-likelihood 

function given the complete data, which is described by 
 

ˆ
ˆ

ˆ( , ) log |t

t

t

t t t

dP
E Y

dP
θ

θ
θ

θ θ
⎧ ⎫⎪ ⎪Λ = ⎨ ⎬
⎪ ⎪⎩ ⎭

 (3.5)

 

where t̂θ  denotes the estimated system parameters at time step t. The maximization step 

finds 
 

( )1
ˆ ˆarg max ,

t
t t t

θ
θ θ θ+

∈Θ
∈ Λ  (3.6)

 

The expectation and maximization steps are repeated until the sequence of model 

parameters converge to the real parameters. The EM algorithm is described by the 

following equations [79, 80] 
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∑

 (3.7)

 

where ( )E ⋅  denotes the expectation operator. The system (3.7) gives the EM parameter 

estimates at each iteration for the model (3.1). Furthermore, since ˆ( , )t tθ θΛ  is continuous 

in both tθ  and t̂θ  the EM algorithm converges to a stationary point in the likelihood 

surface [79, 80, 82]. 

    The system parameters { }2 2ˆ ˆˆ ˆ, , ,t t t tA B C D  can be computed from the conditional 

expectations as [79] 
 

(1) (2)
1 1

1 1
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1 1

1 1
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∑ ∑

∑ ∑
 (3.8)

 

where Q, R and S are given by 
 

, , ; , 1, 2,... ; 1, 2,..
2 2 2

T T T T
i j j i i j i le e e e e e e eQ R S i j n l d

⎧ ⎫ ⎧ ⎫+ ⎧ ⎫⎪ ⎪ ⎪ ⎪= = = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎩ ⎭⎩ ⎭ ⎩ ⎭

 (3.9)

in which ie  is the unit vector in the Euclidean space; that is 1ie =  in the ith position, and 

0 elsewhere. For instance, consider the case n = d = 2, then 1
1

|
t

T
k k t

k

E x x Y−
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  is 
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(3) (3)
11 21

1 (3) (3)
1 12 22
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where { }/ 2; , 1, 2T
ij i jR e e i j= = . The other terms in (3.7) can be computed similarly. 

    The conditional expectations { }(1) (2) (3) (4), , ,t t t tL L L L  are estimated from measurements tY  

as follows [79]: 
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where ( )Tr ⋅  denotes the matrix trace. In (3.11), (1)
kr  and (1)

kN  satisfy the following 

recursions 
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 (3.12)

 

2) Filter estimate of (2)
tL : 

 

{ } { }(2)
1 1 0 0

1 1

| | | |
t t

T T T T
t k k t t k k t t t t

k k

L E x Qx Y E x Qx Y E x Qx Y E x Qx Yθ θ θ− −
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Therefore, (2)
tL can be obtained from (1)

tL . 
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3) Filter estimate of (3)
tL : 
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(3.14)

 

In this case, (3)
kr  and (3)

kN  satisfy the following recursions 
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4) Filter estimate of (4)
tL : 
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where (4)
kr  satisfy the following recursions 
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    Using the filters for ( ) ( 1, 2,3,4)i
tL i =  and the Kalman filter described earlier, the 

system parameters { }, , ,t t t t tA B C Dθ =  can be estimated through the EM algorithm 

described in (3.7). Numerical and experimental results that show the viability of the 
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above algorithm in estimating the channel parameters as well as the channel states from 

measurements are discussed in the following sections. 
 

3.2 LTF Channel Estimation Using the EM Together with Kalman 

Filtering 
The general spatio-temporal lognormal model in (2.7) can be realized by stochastic state 

space representation of the from 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),

, , , ,
kX t

X t A t X t B t w t

y t s t e v tτ

τ τ τ τ= +

= +
 (3.18)

 

where ( ) ( ), ,A t tτ β τ= − , ( ) ( ) ( ) ( ), , , ,B t t t tτ δ τ β τ γ τ= ⎡ ⎤⎣ ⎦ , ( ) [ ]( ) 1 Tw t dW t= , ( )s t  

is the information signal, ( )v t  is the channel disturbance or noise at the receiver, ( ),X t τ  

is the TV power loss (PL) in dB, and ( ) ( ),kX tS t e τ=  is the TV signal attenuation 

coefficient, where ln(10) / 20k = − .  

However, for simplicity we consider the discrete-time version of (3.18) given by 

 

1

t

t t t t t

kx
t t t t

x A x B w

y s e D v
+ = +

= +
 (3.19)

 

where n
tx ∈R  is a state vector, d

ty ∈R  is a measurement vector, m
tw ∈R  is a state 

noise, and d
tv ∈R  is a measurement noise. Note that the state space model is nonlinear 

since the output equation in (3.19) is nonlinear. We consider the general form of state 

space form since the estimation algorithm is derived for the general case. However, in our 

system model (3.18), we have n = d = 1 and m = 2. The noise processes tw  and tv  are 

assumed to be independent zero mean and unit variance Gaussian processes. Further, the 

noises are independent of the initial state 0x , which is assumed to be Gaussian distributed.  
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    The unknown system parameters { }, ,t t t tA B Dθ =  as well as the system states tx  are 

estimated through a finite set of received signal measurement data, { }1 2, ,...,N NY y y y= . 

The methodology proposed is recursive and based on the EM algorithm combined with 

the extended Kalman filter (EKF) to estimate the channel state variables. The latter is 

used due to the nonlinear output equation.  

    The EKF approach is based on linearizing the nonlinear system model (3.19) around 

the previous estimate. It estimates the channel states tx  for given system parameter 

{ }, ,t t t tA B Dθ =  and measurements tY . The EKF is similar to the Kalman filter described 

in (3.2) and (3.3) except we add the linearizing part to (3.2) and is described by [81] 
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(3.20)

 

and (3.3) remains the same. The channel parameters { }, ,t t t tA B Dθ =  are estimated based 

on the EM algorithm, which is described in Section 3.1.2. 

    Now, we consider the estimation of a LTF wireless channel from received signal 

measurements. In particular, the estimation includes the channel parameters, channel PL, 

and received signal. The measurement data are generated by the following system 

parameters 
 

( ) ( ) ( ) ( )2 / 10, 1 0.15 sin , , 5, , 0.2,πγ τ γ τ δ τ β τ−⎛ ⎞⎛ ⎞= + = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

t T
m

tt e t t
T

 (3.21)

 

where ( )mγ τ  is the average PL at a specific location τ and is chosen to be 25, T is the 

observation interval and is chosen to be 0.3 millisecond, and the variances of the state 

and measurement noises are  10-2 and 10-6, respectively.  
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    Figure 3.1 shows the actual and estimated received signal using the EM algorithm 

together with the extended Kalman filter for 500 sampled data. From Figure 3.1, it can be 

noticed that the received signal have been estimated with very good accuracy. Figure 3.2 

shows the received signal estimates root mean square error (RMSE) for 100 runs. It can 

be noticed that it takes just few iterations (less than 15) for the filter to converge, and the 

steady state performance of the proposed LTF channel estimation algorithm using the EM 

together with Kalman filtering is excellent. 
 

3.3 STF Channel Estimation Using the EM Together with Kalman 

Filtering 
In this section, we consider the stochastic STF state space models in (2.32) and (2.36), 

and use a set of measurement data provided by the Canadian communication research 

center (CRC) to perform the EM algorithm together with the Kalman filter in order to 

estimate the STF channel model parameters as well as the inphase and quadrature 

components respectively, which are then compared to the ones obtained from the 

measurement data. 

   However, for simplicity we consider the discrete-time version of (2.32) and (2.36) 

given by 
 

1t t t t t

t t t t t

x A x B w
y C x D v

+ = +
= +

 (3.22)

 

where n
tx ∈R  is a state vector, d

ty ∈R  is a measurement vector, m
tw ∈R  is a state 

noise, and d
tv ∈R  is a measurement noise. We consider the general form of state space 

form since the estimation algorithm is derived for the general case. However, in our 

system model (2.32), we have n = m = 2, d = 1 and ty  represents the inphase or 

quadrature components corrupted by noise. While in (2.36), we have n = m = 4, d = 1 and 

ty  represents the band pass received signal. The noise processes tw  and tv  are assumed 

to be independent zero mean and unit variance Gaussian processes. Further, the noises 

are independent of the initial state 0x , which is assumed to be Gaussian distributed. 
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Figure 3.1: Real and estimated received signal for the LTF channel model. 
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Figure 3.2: Received signal estimates RMSE for 100 runs using the EM algorithm 

together with the extended Kalman filter. 
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     The unknown system parameters { }, , ,t t t t tA B C Dθ =  as well as the system states tx  

are estimated through a finite set of received signal measurement data, 

{ }1 2, ,...,N NY y y y= . For the system model in (2.32), we use measurement data for the 

inphase component or the quadrature component obtained separately. While for the 

system model in (3.36), the measurement data correspond to a linear combination of the 

inphase component and the quadrature component. The measurement data provided by 

the CRC contain 98 data files. The number of samples of the inphase and quadrature 

components in each data file is 766. The methodology proposed is recursive and based on 

the EM algorithm combined with the Kalman filter to estimate the channel state 

variables. A 4th order channel model as described in (2.36) is considered. Therefore, the 

system parameters { }, , ,t t t t tA B C Dθ =  can be represented as 

 

( ) ( ) [ ]

1 12 13 14

1 2 2 22 23 24

31 32 3 34

3 4 41 42 4 44

1 2

0 1 0 0
0 0

, ,
0 0 0 1
0 0
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t t

t c c t

b
a a b

A B
b

a a b

C t t D d d

δ δ δ
δ δ δ

δ δ δ
δ δ δ

ω ω

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤= − =⎣ ⎦

 (3.23)

 

    Note that tB  in (3.23) is different from (2.36) and (2.37), since in (2.37) ( )B t  is block 

diagonal. In (3.23) we made tB  nonsingular by including some small numbers for the 

other entries. As previously mentioned, the estimation of a flat fading wireless channel 

from received signal measurement data is considered. In particular, the estimation 

includes the channel parameters, inphase and quadrature components, and the received 

signal, which are then compared to the ones obtained from measurement data.  Using the 

measurement data, the sample paths of inphase and quadrature components are plotted 

together, and then compared to the ones obtained by viewing the measurements as 

corrupted by white noise sequences. Figure 3.3 shows the measured and estimated 

inphase and quadrature components as well as the received signal using the EM 

algorithm together with Kalman filter for 400 sampled data taken from the measurements 
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Figure 3.3: The measured and estimated inphase and quadrature components, and 

received signal for 4th order channel model using the EM algorithm together with Kalman 

filter. 
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of one channel chosen at random. From Figure 3.3, it can be noticed that the inphase and 

quadrature components of the wireless fading channel as well as the received signal have 

been estimated with very high accuracy. It can also be noticed that the estimation error 

decreases as the number of samples increases; this is because the algorithm is recursive 

and the channel parameters converge to the actual values as more samples are being 

estimated. The system parameters are estimated as 
 

( )

4

2

4

0 1 0 0
0.0756 0.0474 0 0ˆ ,

0 0 0 1
0 0 0.6638 0.0717

0.0484 0.0029 0.0453 4.0686*10
0.0029 0.0462 0.0013 0.0438ˆ ,
0.0453 0.0013 0.0573 0.0047

4.0686*10 0.0438 0.0047 0.0564
ˆ cos 0 sinc

A

B

C tω

−

−

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦
⎡ ⎤− −
⎢ ⎥− −⎢ ⎥= ⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

= − ( ) [ ]2ˆ0 , 0.0119 .ct Dω⎡ ⎤ =⎣ ⎦

 

(3.24)

 

Numerical results indicate that the measured data can be generated through a simple 4th 

order discrete-time stochastic differential equation. 

 

3.4 Ad Hoc Channel Estimation Using the EM Together with Kalman 

Filtering 
In this section, we consider the mobile-to-mobile state space model in (2.47) and (2.36), 

and carry out an experiment to measure the received signal power of moving sensors in a 

wireless sensor platform. Then the EM algorithm together with Kalman filtering is used 

to estimate the mobile-to-mobile channel parameters as well as the inphase and 

quadrature components from the measured received signal. Again, we consider (3.22) as 

the discrete-time version of (2.47) and (2.36). The unknown system parameters 

{ }, , ,t t t t tA B C Dθ =  as well as the system states tx  are estimated through a finite set of 

received signal measurement data, { }1 2, ,...,N NY y y y= . These measurements are 
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collected in the extreme measurement communication center (EMC2) laboratory at Oak 

Ridge National Laboratory (ORNL) using two moving wireless sensor nodes.  

    The wireless sensors used in our experiment are Crossbow’s TelosB sensor nodes. A 

single TelosB sensor node is shown in Figure 3.4. It has the following specifications 

[103]: IEEE 802.15.4 compliant, data rate is 250 kbps, carrier frequency is 2.4 GHz, and 

has USB interface. These sensors are implemented with a Chipcon CC2420 RF 

transceiver chip which provides a built-in received signal strength indicator (RSSI). This 

indicator is averaged over 8 symbol periods (128 micro second). The RSSI has a dynamic 

range of 100 dB and is accurate to +/- 6 dB.  

    Our experimental setup consists of two moving transceivers (sensors 1 and 2) and one 

passive receiver (sensor 3) connected to a workstation as shown in Figure 3.5. At each 

time step, sensors 1 and 2 broadcast a packet containing a source address and the RSSI of 

the most recently received packet from the other sensor. Sensor 3 never transmits; rather, 

it forwards packets from sensors 1 and 2 to a workstation for analysis. The mobile-to-

mobile channel between sensor 1 and 2 is time varying since both sensors move with 

different (variable) velocities and directions. Indoor and outdoor environments are 

considered as well. In our experiment, the indoor environment is the laboratory room 

shown in Figure 3.6, while the outdoor environment is shown in Figure 3.7. 

In the estimation and identification process, a 4th order mobile-to-mobile channel model 

as described in (2.47) and (2.48) is considered. Thus, the system parameters 

{ }, , ,t t t t tA B C Dθ =  can be represented as in (3.23). 

    The estimation includes the channel parameters, inphase and quadrature components, 

and the received signal, which are then compared to the ones obtained from measurement 

data. It is assumed that the received signal measurement data are corrupted by white 

noise sequences. Figures 3.8(a) and 3.8(b) show respectively indoor and outdoor 

measured and estimated received signals using the EM algorithm together with Kalman 

filter for 500 sampled data taken from measurements between sensor 1 and 2. At a certain 

time instant, indoor system parameters are estimated as 
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Figure 3.4: Crossbow TelosB sensor node. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.5: Experimental setup: Two moving transceivers (sensors 1 and 2) and one fixed 

receiver (sensor 3). 
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Figure 3.6: Indoor environment considered in our experiment. 

 
 

 

Figure 3.7: Outdoor environment considered in our experiment. 
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(b) 

Figure 3.8: Measured and estimated received signal from sensor 2 by using a 4th order ad 

hoc channel model for (a) indoor and (b) outdoor environments. 
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0.0742 0.0074 0.0753 0.0021

3.1804*10 0.0532 0.0064 0.0853
ˆ cos 0 sinc

A

B

C tω ω

−

−

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦
⎡ ⎤− −
⎢ ⎥− −⎢ ⎥= ⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

= − ( ) [ ]2ˆ0 , 2.0262 .ct D⎡ ⎤ =⎣ ⎦

 

(3.25)

 

while outdoor system parameters are estimated as 

( )

4

2

4

0 1 0 0
0.7151 0.0037 0 0ˆ ,

0 0 0 1
0 0 0.1500 0.0515

0.5824 0.0735 0.0735 1.5395*10
0.7452 0.0846 0.0083 0.0375ˆ ,
0.0864 0.0365 0.0454 0.0264

1.8643*10 0.0643 0.0820 0.0753
ˆ cos 0 sinc

A

B

C tω ω

−

−

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦
⎡ ⎤− −
⎢ ⎥− −⎢ ⎥= ⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

= − ( ) [ ]2ˆ0 , 1.1725 .ct D⎡ ⎤ =⎣ ⎦

 

(3.26)

 

From Figures 3.8(a) and 3.8(b), it can be noticed that the received signals from indoor 

and outdoor environments have been estimated with very high accuracy. It takes a few 

iterations (about 5 iterations) for the estimation algorithm to converge. The root mean 

square errors (RMSE) for indoor and outdoor environments are shown in Figure 3.9. It 

can be seen that indoor RMSE is higher than the one for outdoor because of reflections 

from walls and objects in indoor environment. Experimental results indicate that the 

measured data can be generated through a simple 4th order discrete-time stochastic 

differential equation with excellent accuracy, and therefore demonstrating the validity of 

the method. 

    In the next chapter, we introduce one important application, namely, stochastic PC 

based on the developed channel models and estimation algorithms. 
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Figure 3.9: Received signal estimates RMSE for indoor and outdoor environments using 

the EM algorithm together with the Kalman filter. 
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Chapter 4 

 

Stochastic Power Control Algorithms 
for Time Varying Wireless Networks 
 

 

 

The aim of the PCAs described here is to minimize the total transmitted power of all 

users while maintaining acceptable QoS for each user. The measure of QoS can be 

defined by the SIR for each link to be larger than a target SIR. In this chapter, different 

PCAs are introduced based on the TV channel models derived in Chapter 2. A 

deterministic PCA (DPCA) is introduced first, and then a stochastic PCA (SPCA) is 

presented. Both centralized and distributed PCAs are considered. Parts of the results 

presented here have been published in [46-48, 68, 104, 106, 107]. 

 

4.1 Representation of TV Wireless Networks 

Consider a cellular network with M mobiles (users) and N base stations. The LTF spatio-

temporal model described in (2.7) for a cellular network can be described as 
 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )0

2
0

, , , , , ,

, [ ]; , 1 ,

ij ij ij ij ij ij

ij tij ij

dX t t t X t dt t dW t

X t PL d dB i j M

τ β τ γ τ τ δ τ

τ σ

= − +

= ≤ ≤N
 (4.1)

 

where subscript ij corresponds to the channel parameters between mobile j and the base 

station assigned to mobile i. The signal attenuation coefficients ( ),ijS t τ  are generated 

using the relation ( ) ( ),, ijkX t
ijS t e ττ = , where ( )ln 10 / 20k = − . Moreover, correlation 

between channels in a multi-user/multi-antenna case can be induced by letting the 
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different Brownian motions ijW ’s to be correlated, i.e., ( ) ( ) ( )TE t t tτ⎡ ⎤ = ⋅⎣ ⎦W W Q , where 

( )( ) ( )ijt W tW , and ( )τQ  is some (not necessarily diagonal) matrix that is a function of 

τ  and dies out as τ  becomes large. The TV received signal of the ith mobile at its 

assigned base station at time t is given by 
 

( ) ( ) ( ) ( ) ( )
1

M

i j j ij i
j

y t p t s t S t n t
=

= +∑  (4.2)

 

where ( )jp t  is the transmitted power of mobile j at time t, which acts as a scaling on the 

information signal ( )js t , and ( )in t  is the channel disturbance or noise at the base station 

of mobile i. 

    Similarly, following the same procedure as the LTF network, the TV STF state space 

representation in (2.36) for M mobiles and N base stations cellular network is written as 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1

ij ij ij ij ij

M
i k k ik ik

dX t A t X t dt B t dW t

y t p t s t C t X t n t
=

= +

= +∑
 (4.3)

 

where ( ) ( ) ( )
ik ik

T

ik I QX t X t X t⎡ ⎤⎣ ⎦ , the processes ( )
ikIX t  and ( )

ikQX t  are the channel 

states for the inphase and quadrature components, respectively, between mobile j and the 

base station assigned to mobile i, ( ) [ ]cos 0 sin 0c cC t t tω ω− , and 1 ,i j M≤ ≤ . The 

TV LTF and STF channel models in (4.1) and (4.3) are used to generate the link gains of 

wireless networks for the PCAs proposed next. 
 

4.2 Centralized Deterministic PCA in TV Wireless Networks 

In this section, we consider the uplink channel of a cellular network and we assume that 

users are already assigned to their base stations. The centralized PC problem for time 

invariant channels for the cellular network can be stated as follows [57] 
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1( 0,.... 0) 1
min subject to , 1

M

M
i ii

i iMp p i j ij ij i

p gp i M
p g

ε
η≥ ≥

=
≠

≥ ≤ ≤
+

∑
∑

 (4.4)

 

where ip  is the power of mobile i, 0ijg >  is the time invariant channel gain between 

mobile j and the base station assigned to mobile i, 0iε >  is the target SIR of mobile i, 

and 0iη >  is the noise power level at the base station of mobile i.  

    Expression (4.4) for TV LTF and STF wireless networks defined in (4.1) and (4.3) 

respectively, described using path-wise QoS of each user over a time interval [0,T] 

becomes [46] 

 

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1( 0,.... 0) 1 0

2 2

0

2 2 2

0 0

22

0

22 2

0 0

min , subject to
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M

TM

ip p i

T

i i ii

iT T
M

k k ik ik i

T

i i ii

iT T
M

k k ik ik i

p t dt

p t s t S t dt

p t s t S t dt n t dt

p t s t C t X t dt

p t s t C t X t dt n t dt

ε

ε

≥ ≥
=

≠

≠

⎧ ⎫
⎨ ⎬
⎩ ⎭

≥
+

⎡ ⎤⎣ ⎦
≥

+⎡ ⎤⎣ ⎦

∑∫

∫

∑ ∫ ∫

∫

∑ ∫ ∫

 
(4.5)

 

and 1, ,i M= . A solution to (4.5) is presented by first introducing the communication 

meaning of predictable power control strategies (PPCS). In wireless cellular networks, it 

is practical to observe and estimate channels at base stations and then send the 

information back to the mobiles to adjust their power signals { }
1

( )
i

M

i
p t

=
.  Since channels 

experience delays, and power control is not feasible continuously in time but only at 

discrete-time instants, the concept of predictable strategies is introduced [57].  

    Consider a set of discrete-time strategies { } 0 1 11
( ) , 0 ... ...

i

M

k k ki
p t t t t t T+=

= < < < < < ≤ . 

At time 1kt − , the base stations observe or estimate the channel information 
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{ }1 1 , 1
( ), ( )

M

ij k i k i j
S t s t− − =

 for LTF or { }1 1 1 , 1
( ), ( ), ( )

M

ij k ij k i k i j
I t Q t s t− − − =

 for STF. Using the concept 

of predictable strategy, the base stations determine the control strategy { } 1
( ) M

i k i
p t

=
 for the 

next time instant kt . The latter is communicated back to the mobiles, which hold these 

values during the time interval [ )1,k kt t− . At time kt , a new set of channel information 

{ }
, 1

( ), ( )
M

ij k i k i j
S t s t

=
 or { }

, 1
( ), ( ), ( )

=

M

ij k ij k i k i j
I t Q t s t  is observed at the base stations and the 

time 1kt +  control strategies { }1 1
( ) M

i k i
p t + =

 are computed and communicated back to the 

mobiles which hold them constant during the time interval [ )1,k kt t + . This procedure is 

described in Figure 4.1. Such decision strategies are called predictable.  

    Using the concept of PPCS over any time interval [ ]1,k kt t + , equation (4.5) is 

equivalent to 
 

( )
( )

( ) ( ) ( ) ( ) ( )( )
1

110

1
1 1 1 1 1

min subject to

, ,
k

M
i kit

k I k k k k k k

p t

t t t t t t t
+

+=>

−
+ + + + +≥ × +

∑p

p ΓG G p η
 (4.6)

 

where 
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Figure 4.1: Power update and information flow for uplink power control using 

predictable power control strategies (PPCS).  
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and ( )diag ⋅  denotes a diagonal matrix with its argument as diagonal entries, and “ T ” 

stands for matrix or vector transpose. The optimization in (4.7) is a linear programming 

problem in 1M ×  vector of unknowns ( )1kt +p . Here [ ]1,k kt t +  is a time interval such that 

the channel model does not change significantly, i.e., [ ]1,k kt t +  should be smaller than the 

coherence time of the channel. 

 

4.3 Distributed Deterministic PCA in TV Wireless Networks 

In this section, we consider an iterative distributed version of the centralized PCA in 

(4.6). This is convenient for on-line implementation since it helps autonomous execution 

at the node or link level, requiring minimal usage of network communication resources 

for control signaling. The iterative distributed PCA proposed in [2] and [14] can be used 

to find a distributed version to the centralized PCA in (4.6). The constraint in (4.6) can be 

written as 
 

( ) ( )( ) ( ) ( ) ( )1 1
1 1 1 1 1, , ,I k k k k k I k k kt t t t t t t t− −

+ + + + +− ≥I ΓG G p ΓG η  (4.8)

 

Defining ( ) ( ) ( )1
1 1 1, , ,−

+ + +k k I k k k kt t t t t tF ΓG G  and ( ) ( ) ( )1
1 1 1, ,−

+ + +k k I k k kt t t t tu Γ G η , 

(4.8) can be written as 
 

( )( ) ( ) ( )1 1 1, ,k k k k kt t t t t+ + +− ≥I F p u  (4.9)

 

If the channel gains are time invariant, i.e., ( )1,k kt t + =F F  and ( )1,k kt t + =u u , then the 

power control problem is feasible if 1ρ <F , where ρF  is the Perron-Frobenius 

eigenvalue of F  [2]. It is shown in [2] and [14] that the following iterative PCA 

converges to the minimal power vector when 1ρ <F  

 

( ) ( )1k kt t+ = +p Fp u  (4.10)

 

However, our channel gains are TV, thus a TV version of the deterministic PCA (DPCA) 
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in (4.10) can be defined as 
 

( ) ( ) ( ) ( )1 1 1, ,k k k k k kt t t t t t+ + += +p F p u  (4.11)

 

Clearly, in general the power vector ( )ktp  will not converge to some deterministic 

constant as in (4.10). Rather, in a TV (random) propagation environment, it is required 

that the power vector ( )ktp  converges in distribution to a well defined random variable. 

Since ( )1,k kt t +F  is a random matrix-valued process, the key convergence condition is 

that the Lyapunov exponent 0λ <F  [58], where λF  is defined as 

 

( ) ( ) ( )0 1 1 2 1
1lim log , , ... ,k kk

t t t t t t
k

λ +→∞
=F F F F  (4.12)

 

The distributed version of (4.11) can be written as 
 

( ) ( )
( ) ( )1 , 1,...,i k

i k i k
i k

t
p t p t i M

R t
ε

+ = =  (4.13)

 

where ( )i kR t  is the instantaneous SIR defined by 

 

( ) ( ) ( )
( ) ( ) ( )

1

1 1

,
,

, ,
i k ii k k

i k M
j k ij k k i k kj i

p t g t t
R t

p t g t t t tη
+

+ +≠

=
+∑

 (4.14)

 

    It is shown in [33] that the performance of the DPCA in (4.13) in terms of power 

consumption is not optimal when the channel environment is TV. Actually, the 

performance can be severely degraded when PCAs that are designed for deterministic 

channels are applied to TV channels [33]. Therefore, stochastic PCAs (SPCAs) must be 

used in order to ensure stable optimal power consumption. The latter is discussed in the 

next section. 
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4.4 Stochastic PCA in TV Wireless Networks 

The matrix ( )1,k kt t +F  in (4.9) has non-negative elements and if the SIR targets are 

feasible, then it has been shown in [33, 112] that the power vector which satisfies the 

equality of (4.9) minimizes the sum of the transmitted power, i.e., the power vector 

( )1kt +p  that satisfies 

( )( ) ( ) ( )1 1 1, , 0k k k k kt t t t t+ + +− − =I F p u  (4.15)

 

is the minimum power vector. 

    We first briefly introduce one basic result on stochastic approximation that will be 

used to solve for the optimal power vector in (4.15). Consider an unknown measurable 

function, ( )h x . A zero point of h , x , is defined by ( ) 0=h x , and can be calculated by 

various rapidly convergent methods such as Newton’s method.  

    Assume now that the observation function is provided by ( )⋅h  but subject to an 

additive measurement noise. The kth measurement is given by 
 

( ) ( )( ) ( )k k k= +y h x ξ  (4.16)

 

where ( )ky  is the observation at the kth time, and ( )kξ  is the zero mean measurement 

error at the kth time and may be dependent on ( )kx . In 1951, Robbins and Monro [67] 

suggested a method for solution of this and a more general problem, which they called 

the method of stochastic approximation. The purpose of using stochastic approximation is 

to find a zero point x  based on the noisy observation ( )ky . Given an arbitrary initial 

point ( )0x  and an arbitrary sequence of positive numbers ( )a k  such that 
 

( )
0k
a k

∞

=

= ∞∑ ,     ( )2

0k
a k

∞

=

< ∞∑   (4.17)

 

Then, it is shown in [67] that the following approximation sequence, 
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( ) ( ) ( ) ( )1k k a k k+ = −x x y  (4.18)

 

converges to the zero point x  of ( )⋅h  with probability one. 

    Since the link gains are random, it can be assumed that the random part in the left hand 

side of (4.15) can be represented as an additive zero mean random noise ( )kξ , therefore, 

applying the stochastic approximation algorithm in (4.18) to (4.15) we get 
 

( ) ( ) ( ) ( )( ) ( ) ( )1 1 1, ,k k k k k k k kt t a t t t t t t+ + +⎡ ⎤= − − −⎣ ⎦p p I F p u  (4.19)

 

which can be written as 
 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 1 1, ,k k k k k k k k kt a t t a t t t t t t+ + +⎡ ⎤= − + +⎣ ⎦p I p F p u  (4.20)

 

Using (4.14), the distributed version of (4.20) is 
 

( ) ( )( ) ( ) ( ) ( )
( ) ( )1 1 i k

i k k i k k i k
i k

t
p t a t p t a t p t

R t
ε

+ = − +  (4.21)

 

If the PC problem is feasible, the distributed SPCA in (4.21) converges to the optimal 

power vector when the step-size sequence satisfies certain conditions. Two different 

types of convergence results are shown in [59] under different choices of the step-size 

sequence. If the step-size sequence satisfies ( )
0

k
k

a t
∞

=

= ∞∑  and ( )2

0
k

k
a t

∞

=

< ∞∑ , then the 

SPCA in (4.21) converges to the optimal power vector with probability one. However, 

due to the requirement for the SPCA to track TV environments, the iteration step-size 

sequence is not allowed to decrease to zero. So we consider the case where the condition 

( )2

0
k

k
a t

∞

=

< ∞∑  is violated. This includes the situation when the step-size sequence 

decreases slowly to zero, and the situation when the step-size is fixed at a small constant. 

In the first case when ( ) 0ka t →  slowly, the SPCA in (4.21) converges to the optimal 
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power vector in probability. While in the second case the power vector clusters around 

the optimal power [59]. In fact, the error between the power vector and the optimal value 

does not vanish for non-vanishing step-size sequence; this is the price paid in order to 

make the algorithm in (4.21) able to track TV environments.  

    This algorithm is fully distributed in the sense that each user iteratively updates its 

power level by estimating the received SIR of its own channel. It does not require any 

knowledge of the link gains and state information of other users. It is worth mentioning 

that the proposed distributed SPCA in (4.21) is different from the algorithm proposed in 

[33] where two parameters, namely, the received SIRs ( )i kR t  and the channel gains 

( )1,ii k kg t t + , are required to be known, while only ( )i kR t  are required in (4.21). 

    The selection of an appropriate [ ]1,k kt t +  will have a significant impact on the system 

performance. For small [ ]1,k kt t + , the power control updates will be more frequent and 

thus convergence will be faster. However, frequent transmission of the feedback on the 

downlink channel will effectively decrease the capacity of the system since more system 

resources will have to be used for power control. The performance of the proposed PCA 

is determined numerically in the next section. 

 

4.5 Numerical Results 

In this section, we consider two numerical examples to determine the performance of the 

proposed PCAs. Example 4.1 and Example 4.2 consider the TV LTF and STF wireless 

networks, respectively.  

 

Example 4.1: The LTF cellular network has the following setup: Number of transmitters 

(mobiles) is M = 24, the information signal ( ) 1is t =  for 1,...,i M= , initial distances of 

all mobiles with respect to their own base stations dii are generated as uniformly 

independent identically distributed (iid) random variables (RVs) in [10 – 100] meters, 

cross initial distances of all mobiles with respect to other base stations ,   ijd i j≠ , are 

generated as uniformly iid RVs in [250 - 550] meters, the angle θij between the direction 
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of motion of mobile j and the distance vector passes through base station i and mobile j 

are generated as uniformly iid RVs in [0 – 180] degrees, the average velocities of mobiles 

are generated as uniformly iid RVs in [40 – 100] km/hr, all mobiles move at sinusoidal 

variable velocities around their average velocities such that the peak velocity is two times 

the average speed, power path-loss exponent is 3.5, initial reference distance from each of 

the transmitters is 10 meters, power path-loss at the initial reference distance is 67 dB, 

( ),ij tδ τ = 1400 and ( ),ij tβ τ  = 225000 for the SDEs, iη ’s are iid Gaussian RVs with zero 

mean and variance 10-12 W.  

    The performance measure is outage probability (OP). It is defined as the probability 

that a randomly chosen link fails due to excessive interference [12]. Therefore, smaller 

OP implies larger capacity of the wireless network. A link with a received SIR iR , less 

than or equal to a target SIR iε , is considered a communication failure. The OP ( )iO ε  is 

expressed as ( ) { }Probi i iO Rε ε= ≤ . The OP is computed using Monte-Carlo 

simulations. The targets SIR, iε , for all users are the same, and varied from 5 dB to 35 

dB with step 5 dB. For each value of iε  the OP is computed every 15 millisecond, i.e., 

[ ]1,k kt t + = 15 millisecond. The simulation is performed for 5 seconds, i.e., [ ]0, T = 5 

seconds.  

    In this example, the centralized DPCA based on PPCS in (4.6) is performed on two 

different TV LTF wireless networks; the stochastic TV channel models in (4.1) and the 

static models encountered in the literature [12]. The OP for the centralized DPCA using 

PPCS based on both stochastic and static TV LTF channel models are shown in Figure 

4.2(a) and 4.2(b), respectively. Figure 4.2 shows how the OP changes with respect to the 

target SIR, iε , and time. As the target SIR increases the OP increases. This is obvious 

since we expect more users to fail as iε  increases. The OP also changes as a function of 

time, since mobiles move in different directions and velocities.  



 84

 
(a) 

 
(b) 

Figure 4.2: OP for the centralized DPCA using PPCS under the TV LTF models in 

Example 4.1 for (a) stochastic models, (b) static models. 
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    The average OP versus iε  over the whole simulation time (5 seconds) is shown in 

Figure 4.3, which shows that the performance of PPCS using the stochastic models is on 

average much better than that of static models. This is because the static models do not 

capture the time variations of the channels. For example, at 10 dB target SIR, the OP is 

reduced from 0.26 for static models to 0.18 for TV stochastic ones; this represents an 

improvement of over 30%. The PPCS algorithm for stochastic models outperforms the 

static ones by an order of magnitude. It can be seen that as iε  increases the performance 

gap between the PPCS using stochastic and static models decreases. This is because the 

effect of iε  (required QoS) is dominant.  

    Figure 4.4 shows the average OP over the whole simulation time (5 seconds) for higher 

noise variance ( ( ),tδ τ = 2800). In this case the stochastic PL ( ),X t τ  have higher 

variations or fluctuations around the average PL ( ),tγ τ , since this parameter controls the 

instantaneous variance of the stochastic PL. The PPCS based on static models when the 

actual channels have high variance gives higher OP than when the actual channels have 

low variance as observed in Figure 4.3 and 4.4. This is due to the fact that channels with 

high variance deviate significantly from the average (static) channels. For example, at 10 

dB target SIR, the OP in the static case is about 0.32 while in the stochastic case, it is 

about 0.2, an improvement of over 37%. Therefore, the optimal transmitted power for the 

static models is no longer optimal when it is used for more realistic stochastic models. 

Hence, stochastic models provide a far more realistic and efficient optimal control. 

    Now, the performance of the distributed DPCA in (4.13) is compared with that of the 

distributed SPCA in (4.21) under stochastic TV LTF channels. With the same parameters 

as Example 4.1, in addition to the target SIRs 5iε =  for all users and 0.1ka = , the total 

transmitted powers of all mobiles using the distributed DPCA in (4.13) and the SPCA in 

(4.21) under stochastic TV LTF channels are shown in Figure 4.5. Note that the power 

axis is logarithmic. Clearly, the distributed SPCA using stochastic approximations 

provides better power stability and consumption than that of the distributed DPCA 

described in [2, 14]. 
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Figure 4.3: Average OP for TV LTF channel models with ( )tδ = 1400. Performance 

comparison. 
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Figure 4.4: Average OP for TV LTF channel models with ( )tδ = 2800. Performance 

comparison. 
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Example 4.2: In this example, the OP of the PPCS algorithm for both Rayleigh and 

Ricean fading channel models is computed numerically and compared with that of no 

power control (NPC). The STF cellular network has the following features: Number of 

mobiles M, target SIRs iε , step-size sequence ( )ka t , [ ]1,k kt t + , [ ]0, T , average velocities 

of mobiles, and iη ’s are the same as in Example 4.1, carrier frequency = 910 MHz, E0ii’s 

are uniformly iid RVs in the range [400-600], E0ij’s (i ≠ j) are uniformly iid RVs in [25-

150], angles of arrival ijmβ ’s for each link are generated as uniformly iid RVs in [0 – 16] 

degrees.  

    The OP as a function of target SIR, iε , and time for both PC based PPCS and NPC 

under a Rayleigh wireless network are shown in Figure 4.6(a) and 4.6(b), respectively. 

Similar remarks as in the LTF network in Example 4.1 still apply here. The average OP 

versus iε  over the whole simulation time for Rayleigh and Ricean wireless networks is 

shown in Figure 4.7. The performance of PPCS is compared with the one for fixed 

transmitter power (i.e. NPC). Results show that the PPCS algorithm outperforms the 

reference algorithm. For example, at 15 dB target SIR, the outage probability of Rayleigh 

flat channel is reduced from 0.6 for NPC case to 0.3 for PPCS case, this represents an 

improvement of 50%. Moreover, the performance of flat Ricean fading is better than the 

one for flat Rayleigh fading channels. This is because the existence of LOS component in 

Ricean channels. 

    Figure 4.8 shows the total transmitted power of all mobiles using the distributed DPCA 

in (4.13) and the SPCA in (4.21) under stochastic TV STF wireless network described in 

Example 4.2. The same conclusion as LTF case, the distributed SPCA using stochastic 

approximations provides better power stability and consumption than that of the DPCA. 
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(a)  

 
(b) 

Figure 4.6: OP under the dynamical STF channel models in Example 4.2. (a) Using PPCS 

algorithm. (b) Using NPC. 
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Figure 4.7: Average OP under dynamical flat Rayleigh and Ricean STF channels. 

Performance comparison. 
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Figure 4.8: Sum of transmitted power of all mobiles for the distributed DPCA and SPCA 

under TV STF channels. 
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Chapter 5 

 

Mobile Station Location and Velocity 
Estimation in Cellular Networks  
 

 

 

In this chapter, several mobile station (MS) location and velocity estimation algorithms in 

cellular network based on received signal measurements are proposed. The received 

signal level method is first used in combination with Maximum Likelihood (ML) 

estimation and triangulation to obtain an estimate of the location of the mobile. Due to 

non-line-of-sight (NLOS) conditions and multipath propagation environments, this 

estimate lacks acceptable accuracy for demanding services as numerical results reveal. 

The 3D wave scattering multipath channel model of Aulin is employed together with 

recursive nonlinear Bayesian estimation algorithms to obtain improved location estimates 

with high accuracy. Several Bayesian estimation algorithms are considered such as the 

extended Kalman filter (EKF), the particle filter (PF), and the unscented particle filter 

(UPF). These algorithms cope with nonlinearities in order to estimate the mobile location 

and velocity. Since the EKF is very sensitive to the initial state, we propose to use the 

ML estimate as an initial state to the EKF. In contrast to the EKF tracking approach, the 

PF and the UPF approaches do not rely on linearized motion models, measurement 

relations, and Gaussian assumptions. Numerical results are presented to evaluate the 

performance of the proposed algorithms when measurement data do not correspond to the 

ones generated by the model. This shows the robustness of the algorithm based on 

modeling inaccuracies. Parts of the results presented here have been published in [69, 70, 

108, 111]. 
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5.1     System Mathematical Models 

5.1.1    The Lognormal Propagation Channel Model 

Here we consider a 2D geometry with the MS located at 0 0( , )x y  and the base stations 

(BSs) located at ( )1 1 2 2
( , ), ( , ),..., ( , )

B BBS BS BS BS BS BSx y x y x y . The general lognormal 

propagation channel model is described by [19] 
 

0
0

( ) ( ) 10 logε
⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

b

b

s sb
b b b b

dPL d PL d X
d

 (5.1)

 

where { } { }0  , 1, 2,..,  , 1, 2,..,≥ ∈ ∈
bbd d s S b B , ( )s

b bPL d  is the path loss from the bth BS 

at distance bd  for the sth sample, 0b
d  is the reference distance, εb is the path loss 

exponent and 2(0; )σ∼s
b bX N  is a Gaussian random variable (RV) represents the 

shadowing variance due to gross variations in the terrain profile and changes in the local 

topography. In cellular networks, the MS preserves and frequently updates, in idle and 

active mode, the received power of the strongest non-serving BSs (e.g., in GSM the 6 

strongest [71]) in addition to the one of the serving cell. Exploiting these measurements 

from surrounding BSs lead to estimate the location of the MS. The maximum likelihood 

estimation (MLE) approach described in Section 5.2 that employs this channel model is 

used to estimate the MS location. 
 

5.1.2  Aulin’s Scattering Model 

The basic 3D wireless scattering channel model described in [44], which assumes that the 

electric field, denoted by E(t), at any receiving point 0 0 0( , , )x y z  is the resultant of P 

plane waves as described in Figure 2.4, in which the receiver moves in the X-Y plane 

having velocity υm in a direction making an angle γ with the X-axis, is given by 
 

( )
1 1

( ) = ( ) cos ( )
P P

n n c n n
n n

E t E t r t t e tω ω θ
= =

= + + +∑ ∑  (5.2)

 

where 
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( )2 cos( ) cosm
n n n

πυω γ α β
λ

= −  (5.3)

( )0 0 0
2 cos cos sin cos sinn n n n n n nx y zπθ α β α β β φ
λ

−
= + + +  (5.4)

 

and ,n nα β  are spatial angles of arrival, nω  is the Doppler shift, nθ  is the phase shift, nr  is 

the amplitude, nφ  is the phase of the nth component, λ  is the wavelength, ( )e t  is a white 

Gaussian noise, and P is the total number of waves. It can be seen from (5.3) and (5.4) 

that the Doppler and phase shifts depend on the velocity and location of the receiver, 

respectively. 

    Clearly, (5.2) assumes transmission of a narrowband signal. This assumption is valid 

only when the signal bandwidth is smaller than the coherence bandwidth of the channel. 

Nevertheless, the above model is not restrictive since it can be modified to represent a 

wideband transmission by including multiple time-delayed echoes. In this case, the delay 

spread has to be estimated. A sounding device is usually dedicated to estimating the time 

delay of each discrete path such as Rake receiver [60]. 

    It can be seen that the noisy instantaneous received field in (5.2)-(5.4) depends 

parametrically on the location and velocity of the receiver. Consequently, this expression 

is used to estimate the MS location and velocity by using the EKF, the PF, and/or the 

UPF. Next, we formulate the location estimation as a filtering problem in state-space 

form [61]. The general form, once discretized, is given by 
 

1 1( , )
( , )

k k k

k k k

− −=
=

x f x w
z h x v

 (5.5)

 

where (.,.)f  and (.,.)h  are known vector functions,  k is the estimation step, kz  is the 

output measurement at time step k, and kx is the system state at time step k and must not 

be confused with location coordinates. Further, kw  and kv  are the discrete zero-mean, 

independent state and measurement noise processes, with covariance matrices Q  and R , 

respectively. 
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    Now let [ ], , , T
k k k k kx x y y=x denote the state of the MS at time k, where kx  and ky  are 

the Cartesian coordinates of the MS, kx  and ky  are the velocities of the MS in the X and 

Y directions, respectively. We choose the case where the velocity of the MS is not known 

and is subject to unknown accelerations. The dynamics of the MS can be written as [62] 
 

2
1

1,11
1 1 2

1 1,2

1

/ 2 01 0 0
00 1 0 0

( , )
0 0 1 0 / 2
0 0 0 1 0

−

−−
− −

− −

−

⎡ ⎤∆∆⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎡ ⎤∆⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = = + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥∆ ∆ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

∆⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

k k kk

kk k k
k k k

k k k kk

k k k

x x
wx x

y y w
y y

x f x w  (5.6)

 

where k∆  is a (possibly non-uniform) measurement interval between time k–1 and k. 

    The measurement equation can be found from Aulin’s scattering model (5.2)-(5.4), 

which can be written in discrete form as 

 

( )
1

( , ) cos ( )
k k k

P

k k k n c k n k n k
n

z h v r t t v tω ω θ
=

= = + + +∑x  (5.7)

 

where 
 

( )( )
2 22

cos cos
k k k

k k
n k n n

x yπ
ω γ α β

λ
+

= −  (5.8) 

( )0
2 cos cos sin cos sin

k k k k k k kn k n n k n n n nx y zπθ α β α β β φ
λ

−
= + + +  (5.9) 

 

    Clearly, the measurement equation h(.,.) is a nonlinear function of the state-space 

vector, as observed in (5.7)-(5.9). If we assume approximate knowledge of the channel, 

which is attainable either through channel estimation at the receiver (e.g., GSM receiver), 

or through various estimation techniques (e.g., least-squares, ML), then this problem falls 

under the broad area of nonlinear parameter estimation from noisy data which can be 

solved using the RNBE algorithms. These algorithms will be discussed in Sections 5.3-
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5.6. The MLE algorithm that employs the lognormal propagation channel model is 

discussed in the next section. 
 

5.2     The MLE Approach for MS Location Estimation 

In this section, The MLE method that employs the lognormal propagation channel model 

described in Section 5.1.1 is considered for the MS location estimation. This method 

exploits the received power measurements at the MS which are available from network 

measurement reports (NMR). Thus, we write the likelihood function and then maximize 

it with respect to the distances ( )1 2, ,..= = Bd d dθ d  from each BS, where θ  is the 

parameter to be estimated. The ML estimator, denoted by ( )1 2
ˆ ˆ ˆˆ ˆ , ,..,= = Bd d dθ d , 

represents the most possible MS/BS distances based on the measurements available at the 

MS. 

    Consider the measurement vector for the sth sample from all BSs, denoted by 

( )1 1 2 2( ) ( ), ( ),.., ( )=s s s s
B BPL d PL d PL dPL d . The distribution function for this vector is the 

B-variate normal distribution given by 
 

( ) ( ) ( )

( ) ( )

/ 2 1 2

1

( ) | 2 det( ) .

1.exp ( ) ( ) ( ) ( )
2

Bs
s

Ts ss s
s

π − −

−

= Σ

⎛ ⎞⎛ ⎞− − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

PL d θ

PL d PL d Σ PL d PL d

p
 (5.10)

 

where ( )( ) ( );∼
ss

B sPL d PL d ΣN , ( )1 21 2( ) ( ), ( ),.., ( )=
s s s s

B BPL d PL d PL dPL d  is the mean 

path loss from each BS, and sΣ  is the covariance matrix. Assuming the noise is 

independent identically distributed (iid), then the logarithm likelihood function is the log 

product of the sample likelihood functions given by 
 

( )
( )

( ) ( )

/ 2/ 2

1

1

1| ( ) log
(2 ) det( )

( ) ( ) ( ) ( )
2

s
SSB

s

S Ts ss ss

s

L
π

−

=

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠
⎛ ⎞

− − −⎜ ⎟
⎝ ⎠

∑

θ PL d
Σ

ΣPL d PL d PL d PL d

 (5.11)
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where S is the total number of samples. Maximizing (5.11) first with respect to ( )
s

PL d , 

the score function yields 
 

{ }
^

1

1( ) ( ),    1, 2,..,
=

= ∀ ∈∑
S

s
b b b b

s
PL d PL d b B

S
 (5.12)

 

Solving for d̂  using the invariance property of the MLE [72], it can be shown that 
 

{ }
0

1

1 1 ( ) ( )
10ˆ 10 ,     1, 2,..,

S
s
b b b

b s

PL d PL d
S

bd b Bε =

⎧ ⎫⎡ ⎤⎪ ⎪−⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑
= ∀ ∈  (5.13)

 

is the MLE for the distance of the bth BS from the MS. Next, we perform triangulation 

using the least squares error method [73] to estimate the MS location 0 0( , )x y , by solving 
 

( )
0 0

2

, 1

ˆarg min
=

⎧ ⎫−⎨ ⎬
⎩ ⎭
∑

B

b bx y b

d d  (5.14)

 

The performance of this location estimation algorithm is discussed through numerical 

results and compared to the following algorithms in Section 5.7. The Recursive Nonlinear 

Bayesian Estimation is discussed next. 
 

5.3     Recursive Nonlinear Bayesian Estimation 

Consider the general discrete-time dynamical system model described in (5.5). Let the 

known probability density functions (PDFs) of the process noise kw  and the 

measurement noise kv  be )k(wp  and )k(vp , respectively. As usual, kw  and kv  are 

assumed to be mutually independent. The set of entire measurements from the initial time 

step to time step k is denoted by { } 1

k
k i i=

=Z z . The distribution of the initial condition 0x  

is assumed to be given by 0 0 0| ) )=(x Z (xp p . 

    The recursive Bayesian filter based on Bayes rule is organized into the time-update 

stage and the measurement-update stage [43]. The time-update stage computes the PDF 

1| )k k −(x Zp  via the Chapman-Kolmogorov equation as 
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1 -1 -1 1 -1| ) | ) | )k k k k k k kd− −= ∫(x Z (x x (x Z xp p p  (5.15)

 

where -1 1| )k k −(x Zp  has been propagated from time step 1k − . Note that in (5.15) the 

Markov property of the state model -1 1 -1| , ) | )k k k k k− =(x x Z (x xp p  has been used. The 

PDF -1| )k k(x xp  is determined by the system model and the known PDF 1)k −(wp . The 

measurement-update stage can be carried out by applying Bayes rule as 
 

1

1

| ) | )| )
| ) | )
k k k k

k k
k k k k kd

−

−

=
∫

(z x (x Z(x Z
(z x (x Z x
p p

p
p p

 (5.16)

 

The PDF | )k k(z xp  is computed by the measurement model and the known PDF )k(vp . 

    In general, the above recursive Bayesian filter does not have a closed form solution, 

and therefore, has to be approximated using the EKF, the PF, and/or the UPF. In the next 

section, the EKF approach that employs the channel model of Aulin to estimate the MS 

location and velocity is discussed. 

 

5.4     The EKF Approach for MS Location and Velocity Estimation 

The EKF is based on linearizing the nonlinear system models around the previous 

estimate. The general algorithm for the discrete EKF can be described by the time-update 

equations given as [42] 
 

1

1 1

ˆ( ,0)
ˆ

k k

T T
k k k k k k k

−

− −

=

= +

x f x

P A P A W Q W
 (5.17)

 

and the measurement-update equations given as 
 

1

ˆ ( ( ,0))
ˆ ( )

T T T
k k k k k k k k k

k k k k k

k k k k

z h

−
⎡ ⎤= +⎣ ⎦

= + −

= −

K P H H P H V R V

x x K x

P I K H P

 (5.18)

 

where 
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1 1ˆ ˆ( ,0),     ( ,0)    

ˆ ˆ( ,0),     ( ,0)    

k k k k

k k k k
h h

v

− −

∂ ∂
= =

∂ ∂
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= =
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f fA x W x
x w

H x V x
x
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K  is the gain matrix, and P̂  is the estimation error covariance. The notation kx  denotes 

the a priori state estimate at time step k and ˆ kx  the a posteriori state estimate given 

measurement zk. kP  and ˆ
kP  are defined similarly. Applying equation (5.19) to our system 

model (5.7)-(5.9), we get 
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and ( )arctan /k k ky xγ = . 
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    As in any nonlinear estimation problem, the convergence of the EKF to the true value 

of the location depends on the initial parameter value; therefore we first develop the MLE 

method to obtain an initial estimator of adequate accuracy for the EKF. This hybrid 

algorithm, as numerical results indicate, has improved accuracy for the final MS location 

estimate. 

    The EKF described above utilizes the first term in a Taylor expansion of the nonlinear 

measurement model in (5.7). It always approximates | )k k(x Zp  by a Gaussian 

distribution. However, if the true density is non-Gaussian, then a Gaussian model may 

not describe it precisely. In such cases PFs yield an improvement in performance in 

comparison to that of an EKF. The design of the PF is discussed in the next section. 

 

5.5 The PF Approach for MS Location and Velocity Estimation 

The PF is a technique for implementing a recursive Bayesian filter by Monte Carlo 

simulations. The key idea is to represent the required posterior density function by a set 

of random samples ( ){ } 1
ˆ N

k j
j

=
x  with associated weights ( ){ } 1

N
k j

jω
=

 and to compute 

estimates based on these samples and weights. In this case the posterior density at time k 

can be approximated as 
 

( ) ( )( )
1

ˆ| )
N

k k k k k
j

j jω δ
=

≈ −∑(x Z x xp  (5.22)

 

We therefore have a discrete-weighted approximation to the true posterior | )k k(x Zp . 

The weights are chosen using the principle of importance sampling [74] 
 

( ) ( )( ) ( ) ( )( )
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1

| |
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∝ k k k k
k

k k k
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p p
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 (5.23)

 

where ( ) ( )( )1| ,−k k kj jx x zq  is the importance proposal distribution function that 

generates the samples ( ){ } 1
ˆ N

k j
j

=
x . The choice of this distribution function is one of the 
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most critical design issues and determines the type of the PF. The optimal proposal 

distribution function that minimizes the variance of the weights conditioned on ( )1−k jx  

and kz  is ( )( ) ( )( )1 1| , | ,− −=k k k k k kopt
j jx x z x x zq p  [74]. 

    However, analytical evaluation of the optimal proposal function is not possible for 

many models, and thus has to be approximated using local linearization [74] or the 

unscented transformation [75]. In this dissertation, the unscented transformation method 

is considered and the resulting filter is called the unscented particle filter (UPF) that is 

described in Section 5.6. 

    Nonetheless, the most popular choice of proposal function is the transition prior 

( )( ) ( )( )1 1| , |− −=k k k k kj jx x z x xq p . This filter is called the generic PF and is discussed 

herein. Although this choice of proposal function results in higher Monte Carlo variations 

than the optimal, it is usually simple to implement. 

    The time-update stage of the generic PF [63] is performed by passing the random 

samples ( ){ }1 1
ˆ − =

N
k j

jx  through the system model (5.6) to obtain the time-updated samples 

( ){ } 1=

N
k j

jx . Namely, the time-updated samples are obtained by 

 

( ) ( ) ( )( )1 1ˆ ,− −=k k kj j jx f x w  (5.24)

 

where ( )1−k jw  is a sample drawn from the PDF 1)−k(wp  of the system noise. The 

samples ( ){ } 1=

N
k j

jx  are distributed as the time updated PDF 1| )−k k(x Zp . 

    The measurement-update stage can be described by substituting the choice of proposal 

distribution ( )( ) ( )( )1 1| , |− −=k k k k kj z jx x x xq p  into (5.23) and normalizing which yields 
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|
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We define a discrete density over ( ){ } 1=

N
k j

jx  with probability mass ( )ωk j  associated 

with each sample ( )k jx . Then we get the measurement-update samples ( ){ } 1
ˆ

=

N
k j

jx  

through a resampling process, such that ( ) ( ){ } ( )ˆPr ω= =k k ki j jx x  for any i. Several 

resampling schemes are presented in the literature such as systematic [76], stratified, and 

residual resampling [77]. However, the specific choice of resampling scheme does not 

significantly affect the performance of the PF. Therefore, systematic resampling is used 

in all of the experiments in Section 5.7 since it is simple to implement. It can be 

performed by drawing a sample uj from the uniform distribution over (0, 1]. Then, the 

sample ( ){ }k Mx  is chosen as the updated sample ( )ˆ k jx  if the random sample uj 

satisfies the relation 
 

( ) ( )
1

0 0
ω ω

−

= =

< <∑ ∑
M M

k j k
i i

i u i  (5.26)

 

where ( )0 0ω =k . This resampling process is repeated for 1,..., .j N=  Finally, the 

estimate of the PF at time k is chosen to be the mean of the samples ( ){ } 1
ˆ

=

N
k j

jx .  

    In the next section, an approximate version of the optimal proposal distribution is 

considered in order to have a more accurate MS location estimate. 

 

5.6 The UPF Approach for MS Location and Velocity Estimation 

The UPF results from using a scaled unscented transformation (SUT) method [75] to 

approximate the optimal proposal distribution within a particle filter framework. The 

SUT provides more accurate approximation than linearization methods [75]. In particular, 

the SUT calculates the posterior covariance accurately to the 3rd order, whereas 

linearization methods such as the EKF rely on a first order biased approximation. The 

SUT method is introduced next. 
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5.6.1 The SUT Method 

The SUT method still approximates the proposal distribution by a Gaussian distribution, 

but it is specified using a minimal set of deterministically chosen sample points. These 

sample points completely capture the true mean and covariance of the Gaussian 

distribution, and when propagated through the true nonlinear system, captures the 

posterior mean and covariance accurately to the 3rd order for any nonlinearity. 

    Consider the state equation described in (5.5). For simplicity, let 1( )−=k kx f x , where 

1−kx  an xn  dimensional random vector and assume 1−kx  has mean 1−kx  and covariance 

1−kP . Then, a set of 2 1xn +  weighted samples or sigma points { },i i iS W= X  are 

deterministically chosen so that they completely capture the true mean and covariance of 

the prior random vector 1−kx . A selection scheme that satisfies this requirement is [75] 
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where ( )2
x xn nλ α κ= + − , , , andα β κ  are scaling parameters, ( )( )1λ −+x k

i
n P  is the 

ith row or column of the matrix square root of ( ) 1λ −+x kn P . Each sigma point is now 

propagated through the nonlinear function 1( ), 0, , 2 .−= = …i i
k k xi nfX X  And the estimated 

mean and covariance of kx  are computed as follows 
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These estimates of the mean and covariance are accurate to the 3rd order for any nonlinear 

function. In comparison, the EKF only calculates the posterior mean and covariance 

accurately to the first order with all higher order moments truncated.  
 

5.6.2 The UPF Design 

The UPF uses the same framework as the regular PF, except that it approximates the 

optimal proposal distribution by a Gaussian distribution using the SUT method. In 

particular, the SUT is used to generate and propagate a Gaussian proposal distribution for 

each particle to get 
 

( ) ( )( ) ( ) ( )( )1| , , , 1, ,− ≈ = …k k k k kopt
j j j j j Nx x z x Pq N  (5.29)

 

That is, at time 1k −  the SUT is used with the new data, to compute the mean and 

covariance of the importance distribution for each particle. Next, the jth particle is 

sampled from this distribution.  

    In the implementation of the UPF, the augmented state vector is defined as the 

concatenation of the original state and noise variables as 
Ta T T

k k k kv⎡ ⎤= ⎣ ⎦x x w . Then the 

SUT sigma point selection scheme is applied to this new augmented state vector to 

calculate the corresponding sigma matrix, a
kX . The complete UPF is described as follows 

[75]: 

a) Initialization ( )0k = : Draw the particles ( ){ }0 1

N
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=
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where [ ].E  is the expectation operator. 
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b) Now for 1, 2,= …k , the importance sampling step is performed by the following 

steps: 
 

• Calculating sigma points 
 

( ) ( ) ( ) ( ) ( )1 1 1 1λ− − − −
⎡ ⎤= ± +⎣ ⎦

a a a a
k k k a kj j j n jx x PX  (5.31)

 

• Performing the time-update stage as 
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• Performing the measurement-update stage as 
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and then sampling ( )k jx  from ( ) ( )( ) ( ) ( )( )1| , ,− =k k k k kj j z j jx x x Pq N . 

 

• Evaluating the importance weights as 
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and then normalizing the importance weights for 1, ,j N= … . 
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c) Finally, a resampling process such as systematic resampling is performed to 

obtain N random particles ( ) ( )( )ˆˆ ,k kj jx P , and the output is generated in the same 

manner as for the generic PF. 
 

    In the next section, numerical examples are presented to illustrate the accuracy of the 

proposed algorithms. 
 

5.7 Numerical Results 

In this numerical example, the performance of the proposed MS location and velocity 

estimation algorithms is determined. We consider first the ML estimate of the MS 

location in which we employ a typical, yet realistic, wireless communication simulation 

setup as follows: 
 

• The service area consists of a 19-cell cluster.  

• The BSs are placed over a uniform hexagonal pattern of cells which are centrally 

equipped with omni-directional antennas.  

• MSs are placed randomly in the central cell. 

• The number of arranged users is 1000.  

• Path-loss exponent εb  is 3.5. 

• Path-loss variance 2σ b  is 8 dB. 

• Reference distance 0b
d  is 200 m for all b. 

• Cell radii is 5000 m. 

• Number of samples S is 10. 

• Number of BSs for triangulation is 5.  

• Radio-frequency is 900 MHz. 

• Performed 100 Monte Carlo simulations.  
 

    Next, we consider the simulation setup for the EKF, the PF, and the UPF approaches 

that employ Aulin’s channel model for MS location and velocity estimation. The 
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simulation setup for the MLE approach remains the same, only now we are trying to 

locate a single MS. The multipath channel has the following features: 
 

• The envelope of the received signal for all paths, rn’s, are generated as Rayleigh iid 

RVs with parameter 0.5.  

• , ,n na β  and nφ  are generated as uniform iid RVs in [0, 2π], [0, 0.2π], and [0, 2π], 

respectively.  

• The total number of paths P is 6 (represents urban environment).  
 

The filters have the following parameters:  

• Number of time steps (measurements) is 50 with 0.1k∆ =  seconds. 

• Process noise covariance Q  and measurement noise variance R  are 2 2I ×  and 0.01, 

respectively, where 2 2I ×  is the two-dimensional identity matrix. 

• The initial PDF of the MS position is assumed to be uniform over the entire cell size 

which represents the worst-case as far as choosing an initial PDF is considered. 

• The initial PDF of the MS velocity is Gaussian distributed with mean 65 meters/sec 

and variance 10. 

• Number of particles is 500.  

• The SUT parameters are set to 1, 0, and 0α β κ= = = . 

• The mean estimate of all particles is used as the final estimate.  
 

The position (or velocity) root mean square error (RMSE) is used as a performance 

measure and is defined as 
 

( ) ( ) ( )true true

1

1 ˆ ˆRMSE
MC Ti i

k k k k
i

k
MC =

= − −∑ x x x x  (5.35)

 

where MC is the number of Monte Carlo simulations performed, and ˆ i
kx  is the filter 

position estimate ( , )Tx y  (or velocity estimate ( , )Tx y ), at time k in Monte Carlo run i. 

The overall RMSE is defined as 
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( ) ( )true true

=1 1

1 1 ˆ ˆRMSE
L MC Ti i

k k k k
k iL MC =

= − −∑ ∑ x x x x  (5.36)

 

where L is the total number of simulation time steps after the convergence of  the filter.  

    Figure 5.1(a) and 5.1(b) show one realization illustrating the convergence of the 

proposed algorithms to the real position and velocity of a moving MS, respectively. 

Figure 5.2 shows the position and velocity RMSE for each time according to (5.35), and 

the overall position and velocity RMSE for the convergent runs using (5.36) are shown in 

Table 5.1. 

    From Figure 5.2 and Table 5.1, it can be noticed that the accuracy of the MLE 

approach is satisfactory. However, in realistic NLOS and multipath conditions this 

method does not perform well. Nevertheless, it can be used as an initial condition for the 

EKF to find a more accurate estimator.  It has been also observed that the accuracy 

increases as the number of samples, S, increases and 2σ b , εb  decrease, as expected. For 

more accurate estimates, Aulin’s channel model is employed together with the EKF, PF, 

and UPF. 

    We observe in Figure 5.1 that the EKF/MLE, PF, and UPF estimators converge to the 

actual location and velocity within a few iterations (less than 5). However, the EKF 

position and velocity estimates oscillate with large deviation around the actual position 

and velocity. This is because the EKF truncates higher order series expansion terms and 

is sensitive to the initial state. However, the latter can be improved by using the ML 

estimate as an initial estimate for the EKF. Since it takes less than 5 iterations for the 

filters to converge near the actual value as shown in Figure 5.1, the RMSE (k) in (5.35) is 

calculated starting from the iteration k = 5. Only convergent runs are used in the RMSE 

calculations. Figure 5.2 shows that the performance of the PF and the UPF approaches 

are about the same and superior to other approaches. The superior performance of the 

UPF is clearly evident. Table 5.1 shows the number of runs that diverged and the 

performance for each approach. The latter shows the appropriateness of choosing the PF 

and the UPF for this kind of problems. We have observed that using fewer particles does 
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Figure 5.1: (a) Location and (b) velocity estimates of a moving MS generated by the 

different filters. 
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Figure 5.2: Location and velocity estimates RMSE (k) generated by the different 

algorithms. 

 

 

Table 5.1: Performance comparison for MS location and velocity estimation algorithms 

using the MLE, EKF, EKF/MLE, PF, and the UPF approaches. 

 
MLE EKF 

EKF/ 

MLE 
PF UPF 

Diverged Runs _ 39 6 2 2 

Position 

RMSE (m) 
73.46 142.38 11.23 4.31 3.81 

Velocity 

RMSE (m/sec) 
_ 51.36 16.52 1.01 0.96 
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not affect significantly the UPF, while the performance of the PF deteriorates. The high 

accuracy is due to the appropriateness of Aulin’s channel model and the efficiency of the 

particle filtering in this particular application. 

    Figure 5.3 shows how robust the particle filtering approach is if we assume that we 

only know the channel parameters { }, ,n n nr α β  within certain tolerances. Specifically, 

0 0 0

0 0 0

0 0 0

(1 ), 5%, 10%, 20% and 30%

(1 ), 5%, 10%, 20% and 30%

(1 ), 5%, 10%, 20% and 30%

n n n n

n n n n

n n n n

r r r rδ δ

α α δα δα

β β δβ δβ

= + ≤

= + ≤

= + ≤

 (5.37)

 

where 
0nr , 

0nα and 
0nβ are the nominal (actual) values of the channel parameters. Figure 

5.3 is generated by assuming that the real channel has parameters 
0nr , 

0nα and 
0nβ , while 

in the estimation stage the channel model parameters used are uniformly distributed about 

their nominal values as in the uncertainty model (5.37), and varying the uncertainty 

percentage from 5% to 30%. It can be noticed that the location and velocity RMSE still 

converge even if the channel parameters have errors. The higher the error is, the longer 

time it takes for the filter to converge. It can also be seen that the final RMSE increases 

for higher errors in channel parameters as expected. 

    The high accuracy, consistency and performance of the proposed UPF approach, 

makes it suitable to be used in any location and velocity estimation applications, 

particularly those which require high accuracy such as emergency services. 
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Figure 5.3: The UPF location and velocity estimates RMSE (k) for imperfect knowledge 

of channel parameters. 
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Chapter 6 

 

Conclusions and Future Work 
 

 

In this dissertation, TV LTF, STF, and ad hoc wireless channel models, which capture 

both the space and time variations of TV wireless channels, are developed. The dynamics 

of the TV wireless channels are described by SDEs and represented in stochastic state 

space form, which essentially capture the spatio-temporal variations of wireless 

communication links. The SDE models proposed allow viewing the wireless channel as a 

dynamical system, which shows how the channel evolves in time and space. They take 

into account the statistical time variations in wireless channels and are more realistic than 

the standard static ones usually encountered in the literature. Inphase and quadrature 

components of the channel and their statistics are derived from the proposed model. The 

proposed models are useful in capturing nodes mobility and environmental changes in 

mobile wireless networks. The state space models have been used to verify the effect of 

fading on a transmitted signal in wireless fading networks. In addition, they allow well-

developed tools of estimation and identification to be applied to this class of problems 

[64-66]. 

    The channel model parameters as well as the inphase and quadrature components are 

estimated recursively with high accuracy from received signal measurements. The 

proposed algorithm consists of filtering based on the Kalman filter to remove noise from 

data, and identification based on the filter-based EM algorithm to determine the 

parameters of the model which best describe the measurements. Experimental results 

indicate that the measured data can be generated through a simple 4th order discrete-time 

stochastic differential equation for STF or ad hoc links (1st order for LTF link) with 

excellent accuracy, and therefore demonstrating the validity of the method. The proposed 
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models are important in the development of a practical channel simulator that replicates 

wireless channel characteristics, and produces outputs that vary in a similar manner to the 

variations encountered in a real-world channel environment. Future work includes 

adjusting the proposed models in order to be able to capture other wireless environments 

such as indoor and ultra-wideband (UWB). This requires modifying the SDE models to 

be able to generate different probability distributions such as Nakagami, Weibull, etc., for 

the various environments. Moreover, generalization of our stochastic models to multiple-

input multiple-output (MIMO) wireless communication systems, which correspond to 

multiple transmitting and receiving antennas, is an emanating area for future work.  

    An optimal DPCA based on the developed channel models is proposed. The optimal 

DPCA is shown to reduce to a linear programming problem if predictable power control 

strategies (PPCS) are used. In addition, an iterative distributed SPCA is used to solve for 

the optimization problem using stochastic approximations. The latter solely requires each 

mobile to know its received signal to interference ratio unlike common SPCAs found in 

the literature. Numerical results show that there are potentially large gains to be achieved 

by using TV stochastic models, and the distributed SPCA provides better power stability 

and consumption than the distributed DPCA. 

    Future work includes developing PCAs without assuming predictable power control 

strategies are applicable. In this case, two formulations in terms of convex optimization 

using linear programming techniques and stochastic control with integral or exponential-

of-integral constraints can be introduced. The first problem is formulated in terms of 

convex optimization and linear programming as follows 
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where 1, ,i M= . The variables in (6.1) are defined in Sections 4.1 and 4.2. According 

to this formulation using predictable strategies this is a convex optimization problem. In 
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addition, any interval [0, T] can be considered as 0 1 2 10 ... ...k kt t t t t T+= < < < < < ≤ , and by 

approximating the integrals by Riemann sums as close as desired, it can be shown that 

(6.1) reduces to a linear programming problem again. The second problem is formulated 

in terms of stochastic control with integral or exponential-of-integral constraints as 
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If there exists a set of { } 1

M
i i

ε
=

 such that the QoS are feasible, by employing Lagrange 

multipliers iλ  for each ( )0,
i

TJ p  we can introduce 
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and then solving the problem ( ) ( )
0

, sup ,l p L pλ

λ
λ λ∗ ∗ ∗

≥
= . Similarly, the QoS can be 

considered as point-wise constraints and pursue the problem 
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Optimizations (6.2) and (6.4) are convex optimization problems, since their objective 

functions and constraints are convex. 
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    An alternative stochastic power control formulation can be stated in terms of outage 

probability (OP). The stochastic PC problem that meets outage constraints can be 

formulated as   
 

( )
1( 0,.... 0) 1 0
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M

TM

ip p i
p t dt
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where [ ]0,t T∈ , iO  is the target OP of user i, and 1, ,i M= . The probabilities in the 

constraint of (6.5) are very difficult to compute. Therefore, approximation using Chernoff 

bounds [113] can be used to evaluate the probability of failure to achieve a desired QoS 

requirement. 

    New estimation algorithms are proposed to track the position and velocity of a MS in a 

cellular network. They are based on Aulin’s scattering model combined with the EKF, 

PF, and UPF estimation algorithms. Since the instantaneous electric field is a nonlinear 

function of the MS location and velocity, the EKF, PF, and UPF are appropriate for the 

estimation process. They take into account multipath propagation environment and 

NLOS conditions, which are usually encountered in wireless fading channels. Numerical 

results for typical simulations including the presence of parameters uncertainty show that 

they are highly accurate and consistent. The performance of the PF and the UPF 

estimation methods are superior to the EKF. This is due to the sensitivity of the EKF to 

the initial condition and Gaussian assumptions. An alternative is to use the ML estimate 

that employs the lognormal channel model, as the initial EKF state. The use of nonlinear 

models and/or non-Gaussian noise is the main explanation for the improvement in 

accuracy of the PF and the UPF over linear algorithms such as the EKF. These methods 

also excel in using inherent features of the cellular system, i.e., they support existing 

network infrastructure and channel signalling. The assumptions are knowledge of the 

channel and access to the instantaneous received field, which are obtained through 

channel sounding samples from the receiver circuitry. Future work will focus on 
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generating efficient channel estimation algorithms, to remove the assumption on partial 

knowledge of the channel. Work on building a pilot application to test the performance of 

the PF and/or the UPF in realistic conditions is on-going together with the incorporation 

of channel model parameters estimation algorithms. 
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