61 research outputs found

    Neuroprotective effects of Zingerone against carbon tetrachloride (CCl4) induced brain mitochondrial toxicity in Swiss albino mice

    Get PDF
    The present study targeted the brain mitochondria dysfunction in Swiss albino mice through carbon tetrachloride intoxication and its treatment with Zingerone. It is proposed that brain mitochondria is the main organelle responsible for oxidative stress by producing  reactive oxygen species (ROS). Swiss albino mice were divided into four groups; Group-1 was control; Group-2 was carbon tetrachloride (CCl4) toxic (1.5mg kg-1 bm i.p two days in a week.); Group-3 was pretreated with Zingerone (100 mg kg-1 b.m)  a day before  the administration of CCl4 and Group-4 was only Zingerone (100 mg kg-1 bm) given orally for 15days once in a day. At the end of the experiment mice were sacrificed and mitochondria were isolated from brain. Isolated brain mitochondria were further analyzed for oxidative stress marker. Thiobarbituric acid reactive substance (TBARS) content was increased significantly by CCl4 administration in Group-II as compared to the control Group-I, while the antioxidant (GSH) and other antioxidant enzyme GPx , GR, and CAT was depleted significantly in CCl4 treated Group-II as compare to control Group-I. Zingerone protected the  toxicity of brain mitochondria by reducing the lipid peroxidation and enhancing the antioxidant enzyme in Group-III and there was no significant changes were noticed in Group-IV as  compared to Group-I. Overall results showed the potential effects of Zingerone in protecting the neuronal cell loss by oxidative stress. Thus, the  present study indicated that the Zingerone may be used as the potential therapeutic tools for the prevention of CCl4 induced brain mitochondrial toxicity. &nbsp

    Preventive role of Withania somnifera on hyperlipidemia and cardiac oxidative stress in streptozotocin induced type 2 diabetic rats

    Get PDF
    Purpose: The present study was intended to investigate the preventive role of Withania somnifera (WS) on hyperlipidemia and oxidative stress in the heart of streptozotocin (STZ)-induced type 2 diabetic rats.Methods: Single intraperitoneal injection of STZ (100 mg/kg) was given to 2 days rat pups to induce type 2 diabetes mellitus. Diabetes was confirmed 90 days after the administration of STZ by measuring blood glucose level. WS (200 and 400 mg/kg) was administered orally once a day for 5 weeks after the confirmation of diabetes. Glucose, lactate dehydrogenase (LDH), creatinine kinase (CK), total cholesterol (TCh), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), verylow density lipoprotein cholesterol (VLDL-C) and markers of oxidative stress parameters like lipid peroxidation (LPO), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) were evaluated in the heart of type 2 diabetic rats.Results: Oral administration of WS for 5 weeks resulted in a significant (P<0.001) reduction in glucose, LDH, CK, TC, TG, LDL-C, VLDL-C levels with significant elevation of HDL-C levels. On the other hand, WS treated diabetic rats significantly (P<0.01-P<0.001) reduced the elevated levels of LPO, increased levels of antioxidant enzymes (i.e, GSH, GPx, GR, GST, SOD and CAT).Conclusion: These findings propose the role of hyperlipidemia and cardiac oxidative stress in type 2 diabetic rats and suggested protective effect of WS in this animal model.Keywords: Withania somnifera; Hyperlipidemia; Oxidative stress; Streptozotocin; Type 2 diabete

    In Vitro Propagation of Eggplant through Meristem Culture

    Get PDF
    Meristem culture was done for developing an efficient protocol of production of eggplant clones. Shoot tips of 30-35 days old field grown eggplants were used for meristem isolation. Three cultivars viz. ‘Islampuri’, ‘Khatkhatia’ and ‘Katabegun’ were used in the present investigation as explants source. Surface sterilization of shoot tips was found to be the best in 0.1% HgCl2 solution for 3 minutes. For primary establishment of isolated apical meristem in MS liquid medium containing 2.0 mg l-1 BAP was found the best in cv Islampuri. BAP was also proved to be best for the primary establishment of isolated apical meristem in all the cultivars. Subsequent development of meristem derived shoot was achieved in MS semisolid medium containing either 2.0 mg l-1 BAP and 1.0 mg l-1 NAA or 1.0 mg l-1 BAP. For root development from meristem derived shoots, 1.0 mg l-1 IBA was found most responsive in cv. ‘Islampuri’ and ‘Khatkhatia’. Aft er transplantation, the in vitro plants showed normal growth

    Determination of Apposite Plant Regeneration Protocol for Several Cucurbits through Direct and Indirect Organogenesis

    Get PDF
    A competent and reproducible practice for the invitro shoot regeneration of Cucurbita maxima,C.pepo and Cucumissativus was developed from various explants through direct and indirect organogenesis.InC. maxima, between cotyledon and leaf segment, cotyledon was found to be most responsive for callus induction in MS medium augmented with 0.5 mg·L-1 2,4 dichlorophenoxy acetic acid (2,4-D) plus 100 mg·L-1 casein hydrolysate and 0.5 mg·L-1 2,4-D plus 15% coconut water and for leaf segment it was on MS medium containing 2.5 mg·L-1 2,4-D. Comparing the 2 explants it was found that leaf segment was most suitable for callus induction in C. maxima. For massive multiplication of C. pepomericlones shoot tip and nodal cutting were used. MS medium containing 3.0 mg·L-1 6-benzyl aminopurine plus 0.5 mg·L-1gibberellic acid (GA3) was found most effective for shoot regeneration and 1.0 mg·L-1 IBA was found most effective for rooting. In this trait cv. Bulum was more responsive than cv. Rumbo. On the other hand, to generate virus free plantlets of C. sativus, different concentrations of kinetin were used, and 1.5 mg·L-1 KIN shown the best performance for primary culture establishment. For shoot multiplication, 1.0 mg·L-1 BAP and 2.0 mg·L-1 BAP plus 0.5 mg·L-1 KIN containing medium shown best result. Subsequently, 2.0 mg·L-1 BAP plus 0.5 mg·L-1 KIN was best composition for root induction. Our report demonstrated comprehensive protocols and variability in explants, growth regulator response in shoot regeneration potential of in different cucurbit plants

    Therapeutic potential of oleic acid nanovesicles prepared from petroleum ether extract of Sargassum binderi in streptozotocin–induced diabetic wound in Wistar rats

    Get PDF
    Purpose: To study the effectiveness of phyto-oleic acid nanovesicles (PONVs) developed from Sargassum binderi (an alga) in healing diabetic wound in a rat model, and to establish the associated changes in cytokine network.Methods: Phyto-extract was obtained from the whole plant of Sargassum binderi by Soxhlet extraction using petroleum ether as solvent. The crude extract was subjected to phytochemical analysis and used in the formulation of POVNs. The PONVs were formulated by entrapping petroleum ether extract of Sargassum binderi using the film hydration technique. Wound healing property was determined by measuring both pro-inflammatory and anti-inflammatory cytokines using enzyme-linked immunosorbent assay (ELISA).Results: Tannins and steroids were the major components of the petroleum ether extract of Sargassum binderi. Serum cytokine levels were increased after inducing diabetes and creating the wound. The serum levels of IL-2, TNF-α and IL-1β were 37.3 ± 3.3, 76.3 ± 5.2 and 3307.6 ± 350 pg/ml, respectively. Treatment with PONVs modulated the serum cytokine levels through significant decreases in serum IL-2, TNF-α, IL-1β levels, and significant elevation of serum IL-4.Conclusion: These results indicate that PONVs have promising potentials for application as topical treatment for diabetic wounds.Keywords: Brown algae, Sargassum binderi, Oleic acid nanovesicles, Diabetic wound, Cytokine

    Antidiabetic potential of Moringa oleifera Lam. leaf extract in type 2 diabetic rats, and its mechanism of action

    Get PDF
    Purpose: To explore the antidiabetic potential of Moringa oleifera leaf extract in type 2 diabetic rats, and the underlying mechanisms.Methods: Streptozotocin (STZ) at a dose of 40 mg/kg was given to high fat diet (HFD)- fed rats to induce type 2 diabetes. M. oleifera leaf extract at doses 100, 200 and 400 mg/kg were given to 3 groups of type 2 diabetic rats. The area under curve (AUC) of glucose and homeostasis model assessment of insulin resistance (HOMA-R) were calculated using appropriate formulas, whereas levels of glucose,insulin, peroxisome proliferator activated receptor-γ (PPARγ, dipeptidyl peptidase-IV (DPP-IV) and inflammatory cytokines (IL-6, IL-1β and TNFα) were assayed using ELISA kits.Results: The leaf extract of M. oleifera significantly reduced the levels of glucose, insulin and cytokines in treated type 2 diabetic groups (p < 0.05). DC group had significantly increased AUC for glucose, whereas the extract-treated groups showed significant  decrease in glucose AUC. There was significant decrease in insulin sensitivity parameters, as indicated by increase in HOMA-R and decrease in PPARγ levels in the DC group (p < 0.05). However, treatment with the M. oleifera extract reversed this trend via marked decrease in HOMA-R level and significant rise in PPARγ level. In contrast, the extract had no effect on DPP-IV concentration in diabetic treated groups (p < 0.05).Conclusion: These results indicate that M. oleifera leaf extract mitigates hyperglycemia in type 2 DM by modulating hyperinsulinemia, PPARγ and inflammatory cytokines. Thus, the extract is a potential source of drug for the management of type 2 DM. Keywords: Moringa oleifera, Diabetes mellitus, Streptozotocin, Peroxisome proliferator activated receptor-γ, Dipeptidyl peptidase I

    A 30-day follow-up study on the prevalence of SARS-COV-2 genetic markers in wastewater from the residence of COVID-19 patient and comparison with clinical positivity

    Get PDF
    Wastewater based epidemiology (WBE) is an important tool to fight against COVID-19 as it provides insights into the health status of the targeted population from a small single house to a large municipality in a cost-effective, rapid, and non-invasive way. The implementation of wastewater based surveillance (WBS) could reduce the burden on the public health system, management of pandemics, help to make informed decisions, and protect public health. In this study, a house with COVID-19 patients was targeted for monitoring the prevalence of SARS-CoV-2 genetic markers in wastewa-ter samples (WS) with clinical specimens (CS) for a period of 30 days. RT-qPCR technique was employed to target non-structural (ORF1ab) and structural-nucleocapsid (N) protein genes of SARS-CoV-2, according to a validated experimental protocol. Physiological, environmental, and biological parameters were also measured following the American Public Health Association (APHA) standard protocols. SARS-CoV-2 viral shedding in wastewater peaked when the highest number of COVID-19 cases were clinically diagnosed. Throughout the study period, 7450 to 23,000 gene copies/1000 mL were detected, where we identified 47 % (57/120) positive samples from WS and 35 % (128/360) from CS. When the COVID-19 patient number was the lowest (2), the highest CT value (39.4; i.e., lowest copy number) was identified from WS. On the other hand, when the COVID-19 patients were the highest (6), the lowest CT value (25.2 i.e., highest copy numbers) was obtained from WS. An advance signal of increased SARS-CoV-2 viral load from the COVID-19 patient was found in WS earlier than in the CS. Using customized primer sets in a traditional PCR approach, we confirmed that all SARS-CoV-2 variants identified in both CS and WS were Delta variants (B.1.617.2). To our knowledge, this is the first follow-up study to determine a temporal relationship be-tween COVID-19 patients and their discharge of SARS-CoV-2 RNA genetic markers in wastewater from a single house including all family members for clinical sampling from a developing country (Bangladesh), where a proper sewage system is lacking. The salient findings of the study indicate that monitoring the genetic markers of the SARS-CoV-2 virus in wastewater could identify COVID-19 cases, which reduces the burden on the public health system during COVID-19 pandemics.Peer reviewe

    Catha edulis active principle, cathinone, suppresses motor coordination, accelerates the anxiety and alters the levels of dopamine and its metabolites in the limbic areas of male Swiss albino mice

    Get PDF
    Cathinone, the active principle of khat (Catha edulis), stimulates, excites and produces euphoric feelings in khat users. Locomotor and rearing activities, either individual or in groups, of male Swiss albino mice were decreased significantly compared to the control. Motor coordination tests (rotarod, rope climb and grip tests) have shown decreased motor performance in the mice treated with cathinone compared to the control. The elevated plus maze test has shown significant anxiety in the mice compared to the control. Contents of dopamine and its metabolite, homovanillic acid, were increased in the limbic areas compared to the control group. In contrast, contents of 3,4-dihydroxyphenyl acetic acid were depleted significantly and dose dependently compared to the control group in the limbic areas of mice. In conclusion, natural cathinone has depleted motor coordination, accelerated anxiety in mice and altered the contents of dopamine and its metabolites

    Low Temperature Synthesis of Superparamagnetic Iron Oxide (Fe3O4) Nanoparticles and Their ROS Mediated Inhibition of Biofilm Formed by Food-Associated Bacteria

    Get PDF
    In the present study, a facile environmentally friendly approach was described to prepare monodisperse iron oxide (Fe3O4) nanoparticles (IONPs) by low temperature solution route. The synthesized nanoparticles were characterized using x-ray diffraction spectroscopy (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) measurements, Fourier-Transform Infrared Spectroscopy (FTIR), and Thermogravimetric analysis (TGA) analyses. XRD patterns revealed high crystalline quality of the nanoparticles. SEM micrographs showed the monodispersed IONPs with size ranging from 6 to 9 nm. Synthesized nanoparticles demonstrated MICs of 32, 64, and 128 μg/ml against Gram negative bacteria i.e., Serratia marcescens, Escherichia coli, and Pseudomonas aeruginosa, respectively, and 32 μg/ml against Gram positive bacteria Listeria monocytogenes. IOPNs at its respective sub-MICs demonstrated significant reduction of alginate and exopolysaccharide production and subsequently demonstrated broad-spectrum inhibition of biofilm ranging from 16 to 88% in the test bacteria. Biofilm reduction was also examined using SEM and Confocal Laser Scanning Microscopy (CLSM). Interaction of IONPs with bacterial cells generated ROS contributing to reduced biofilm formation. The present study for the first time report that these IONPs were effective in obliterating pre-formed biofilms. Thus, it is envisaged that these nanoparticles with broad-spectrum biofilm inhibitory property could be exploited in the food industry as well as in medical settings to curtail biofilm based infections and losses
    corecore