4 research outputs found

    La gestión energética en la Unidad Empresarial de Base de la Empresa de Hidroenergía

    Get PDF
    The present work is based on the application of the technology of efficient total administration of energy, where one kept in mind the analysis of the control of the energy payees, indexes of consumptions as well as energy efficiency is achieved. It allows the company Unidad Empresarial de Base de Empresa de Hidroenergía de Pinar del Rio to make an energy characterization for elements' consumers, create key positions and identify fundamental personnel. The process intervenes with consumption of different energy resources (operatives and main bosses), besides the differentiated Bank of Problems and a plan of measures that allowed the energy saving.El presente trabajo se basa, en la aplicación de la tecnología de gestión total eficiente de energía, donde se tuvo en cuenta el análisis del control de los portadores energéticos, índices de consumos así como de la eficiencia energética lograda, lo que permitió a la Unidad Empresarial de Base de Empresa de Hidroenergía de Pinar del Río hacer una caracterización energética por elementos consumidores, la creación de los puestos clave y la identificación del personal fundamental que interviene en los procesos de consumo de los diferentes portadores energéticos (Operarios y Jefes Clave), además del Banco de Problemas diferenciado y un plan de medidas que permitieron el ahorro de energía

    Assessment of the Performance of Lactate Dehydrogenase-Based Rapid Diagnostic Test for Malaria in Djibouti in 2022–2023

    No full text
    International audienceUntil 2020, Djiboutian health authorities relied on histidine-rich protein-2 (HRP2)-based rapid diagnostic tests (RDTs) to establish the diagnosis of Plasmodium falciparum. The rapid spread of P. falciparum histidine-rich protein-2 and -3 (pfhrp2/3) gene-deleted parasite strains in Djibouti has led the authorities to switch from HRP2-based RDTs to lactate dehydrogenase (LDH)-based RDTs targeting the plasmodial lactate dehydrogenase (pLDH) specific for P. falciparum and P. vivax (RapiGEN BIOCREDIT Malaria Ag Pf/Pv pLDH/pLDH) in 2021. This study was conducted with the primary objective of evaluating the diagnostic performance of this alternative RDT. Operational constraints related, in particular, to the implementation of this RDT during the COVID-19 pandemic were also considered. The performance of BIOCREDIT Malaria Ag Pf/Pv (pLDH/pLDH) RDT was also compared to our previously published data on the performance of two HRP2-based RDTs deployed in Djibouti in 2018–2020. The diagnosis of 350 febrile patients with suspected malaria in Djibouti city was established using two batches of RapiGEN BIOCREDIT Malaria Ag Pf/Pv (pLDH/pLDH) RDT over a two-year period (2022 and 2023) and confirmed by real-time quantitative polymerase chain reaction. The sensitivity and specificity for the detection of P. falciparum were 88.2% and 100%, respectively. For P. vivax, the sensitivity was 86.7% and the specificity was 100%. Re-training and closer supervision of the technicians between 2022 and 2023 have led to an increased sensitivity to detect P. falciparum (69.8% in 2022 versus 88.2% in 2023; p < 0.01). The receiver operating characteristic curve analysis highlighted a better performance in the diagnosis of P. falciparum with pLDH-based RDTs compared with previous HRP2-based RDTs. In Djibouti, where pfhrp2-deleted strains are rapidly gaining ground, LDH-based RDTs seem to be more suitable for diagnosing P. falciparum than HRP2-based RDTs. Awareness-raising and training for technical staff have also been beneficial

    Molecular investigation of malaria-infected patients in Djibouti city (2018–2021)

    No full text
    Abstract Background The Republic of Djibouti is a malaria endemic country that was in pre-elimination phase in 2006–2012. From 2013, however, malaria has re-emerged in the country, and its prevalence has been increasing every year. Given the co-circulation of several infectious agents in the country, the assessment of malaria infection based on microscopy or histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDT) has shown its limitations. This study, therefore, aimed to assess the prevalence of malaria among febrile patients in Djibouti city using more robust molecular tools. Methods All suspected malaria cases reported to be microscopy-positive were randomly sampled (n = 1113) and included in four health structures in Djibouti city over a 4-year period (2018–2021), mainly during the malaria transmission season (January–May). Socio-demographic information was collected, and RDT was performed in most of the included patients. The diagnosis was confirmed by species-specific nested polymerase chain reaction (PCR). Data were analysed using Fisher’s exact test and kappa statistics. Results In total, 1113 patients with suspected malaria and available blood samples were included. PCR confirmed that 788/1113 (70.8%) were positive for malaria. Among PCR-positive samples, 656 (83.2%) were due to Plasmodium falciparum, 88 (11.2%) Plasmodium vivax, and 44 (5.6%) P. falciparum/P. vivax mixed infections. In 2020, P. falciparum infections were confirmed by PCR in 50% (144/288) of negative RDTs. After the change of RDT in 2021, this percentage decreased to 17%. False negative RDT results were found more frequently (P < 0.05) in four districts of Djibouti city (Balbala, Quartier 7, Quartier 6, and Arhiba). Malaria occurred less frequently in regular bed net users than in non-users (odds ratio [OR]: 0.62, 95% confidence interval [CI]: 0.42–0.92). Conclusions The present study confirmed the high prevalence of falciparum malaria and, to a lesser extent, vivax malaria. Nevertheless, 29% of suspected malaria cases were misdiagnosed by microscopy and/or RDT. There is a need to strengthen the capacity for diagnosis by microscopy and to evaluate the possible role of P. falciparum hrp2 gene deletion, which leads to false negative cases of P. falciparum
    corecore