81 research outputs found

    Road Feature Extraction from High Resolution Aerial Images Upon Rural Regions Based on Multi-Resolution Image Analysis and Gabor Filters

    Get PDF
    Accurate, detailed and up-to-date road information is of special importance in geo-spatial databases as it is used in a variety of applications such as vehicle navigation, traffic management and advanced driver assistance systems (ADAS). The commercial road maps utilized for road navigation or the geographical information system (GIS) today are based on linear road centrelines represented in vector format with poly-lines (i.e., series of nodes and shape points, connected by segments), which present a serious lack of accuracy, contents, and completeness for their applicability at the sub-road level. For instance, the accuracy level of the present standard maps is around 5 to 20 meters. The roads/streets in the digital maps are represented as line segments rendered using different colours and widths. However, the widths of line segments do not necessarily represent the actual road widths accurately. Another problem with the existing road maps is that few precise sub-road details, such as lane markings and stop lines, are included, whereas such sub-road information is crucial for applications such as lane departure warning or lane-based vehicle navigation. Furthermore, the vast majority of roadmaps aremodelled in 2D space, whichmeans that some complex road scenes, such as overpasses and multi-level road systems, cannot be effectively represented. In addition, the lack of elevation information makes it infeasible to carry out applications such as driving simulation and 3D vehicle navigation

    Probabilistic travel time progression and its application to automatic vehicle identification data

    Get PDF
    Travel time has been identified as an important variable to evaluate the performance of a transportation system. Based on the travel time prediction, road users can make their optimal decision in choosing route and departure time. In order to utilise adequately the advanced data collection methods that provide real-time different types of information, this paper is aimed at a novel approach to the estimation of long roadway travel times, using Automatic Vehicle Identification (AVI) technology. Since the long roads contain a large number of scanners, the AVI sample size tends to reduce and, as such, computing the distribution for the total road travel time becomes difficult. In this work, we introduce a probabilistic framework that extends the deterministic travel time progression method to dependent random variables and enables the off-line estimation of road travel time distributions. In the proposed method, the accuracy of the estimation does not depend on the size of the sample over the entire corridor, but only on the amount of historical data that is available for each link. In practice, the system is also robust to small link samples and can be used to detect outliers within the AVI data

    A traffic simulation standard based on data marts

    Get PDF
    Traffic Simulation models tend to have their own data input and output formats. In an effort to standardise the input for traffic simulations, we introduce in this paper a set of data marts that aim to serve as a common interface between the necessaary data, stored in dedicated databases, and the swoftware packages, that require the input in a certain format. The data marts are developed based on real world objects (e.g. roads, traffic lights, controllers) rather than abstract models and hence contain all necessary information that can be transformed by the importing software package to their needs. The paper contains a full description of the data marts for network coding, simulation results, and scenario management, which have been discussed with industry partners to ensure sustainability

    A physically sound vehicle-driver model for realistic microscopic simulation

    Get PDF
    In microscopic traffic simulators, the interaction between vehicles is considered. The dynamics of the system then becomes an emergent property of the interaction between its components. Such interactions include lane-changing, car-following behaviours and intersection management. Although, in some cases, such simulators produce realistic prediction, they do not allow for an important aspect of the dynamics, that is, the driver-vehicle interaction. This paper introduces a physically sound vehicle-driver model for realistic microscopic simulation. By building a nanoscopic traffic simulation model that uses steering angle and throttle position as parameters, the model aims to overcome unrealistic acceleration and deceleration values, as found in various microscopic simulation tools. A physics engine calculates the driving force of the vehicle, and the preliminary results presented here, show that, through a realistic driver-vehicle-environment simulator, it becomes possible to model realistic driver and vehicle behaviours in a traffic simulation

    Traffic safety risks trends and patterns analysis on motorways

    Get PDF
    Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestion. Hence, reducing the frequency of crashes assist in addressing congestion issues (Meyer, 2008). Analysing traffic conditions and discovering risky traffic trends and patterns are essential basics in crash likelihood estimations studies and still require more attention and investigation. In this paper we will show, through data mining techniques, that there is a relationship between pre-crash traffic flow patterns and crash occurrence on motorways, compare them with normal traffic trends, and that this knowledge has the potentiality to improve the accuracy of existing crash likelihood estimation models, and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash occurrence. K-Means clustering algorithm applied to determine dominant pre-crash traffic patterns. In the first phase of this research, traffic regimes identified by analysing crashes and normal traffic situations using half an hour speed in upstream locations of crashes. Then, the second phase investigated the different combination of speed risk indicators to distinguish crashes from normal traffic situations more precisely. Five major trends have been found in the first phase of this paper for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Moreover, the second phase explains that spatiotemporal difference of speed is a better risk indicator among different combinations of speed related risk indicators. Based on these findings, crash likelihood estimation models can be fine-tuned to increase accuracy of estimations and minimize false alarms

    Pre-crash and non-crash traffic flow trends analysis on motorways

    Get PDF
    Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence, reducing the frequency of crashes assists in addressing congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a short time window around the time of a crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists. We will compare them with normal traffic trends and show this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding to traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash. Using the K-Means clustering method with Euclidean distance function allowed the crashes to be clustered. Then, normal situation data was extracted based on the time distribution of crashes and were clustered to compare with the “high risk” clusters. Five major trends have been found in the clustering results for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Based on these findings, crash likelihood estimation models can be fine-tuned based on the monitored traffic conditions with a sliding window of 30 minutes to increase accuracy of the results and minimize false alarms

    Pre-crash traffic flow trend analysis on motorways

    Get PDF
    Crashes on motorway contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence reduce crashes will help address congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a Short time window around the time of crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques, that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists, and that this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with traffic flow data of one hour prior to the crash using an incident detection algorithm. Traffic flow trends (traffic speed/occupancy time series) revealed that crashes could be clustered with regards of the dominant traffic flow pattern prior to the crash. Using the k-means clustering method allowed the crashes to be clustered based on their flow trends rather than their distance. Four major trends have been found in the clustering results. Based on these findings, crash likelihood estimation algorithms can be fine-tuned based on the monitored traffic flow conditions with a sliding window of 60 minutes to increase accuracy of the results and minimize false alarms

    Factors effecting motor vehicle growth in Dhaka

    Get PDF
    Dhaka’s traffic is heterogeneous, both motorized (MT) and non-motorized (NMT) transport are common. Traffic congestion has become a part of city dwellers’ lives. This paper explores the factors for motor vehicle growth in Dhaka. The scope of the paper will be limited to literature review..
    • …
    corecore