32 research outputs found

    Deriving policies from connection codes to ensure ongoing voltage stability

    Get PDF
    The management of distribution and transmission networks is becoming increasingly complex due to the proliferation of renewables-based distributed energy resources (DER). Existing control systems for DER are based on static specifications from interdependent network connection documents. Such systems are inflexible and their maintenance requires concerted effort between grid stakeholders. In this paper we present a new supplementary control approach to increase the agility of the electricity grid. The ICT system that underlies smart grids has the potential to offer, by analogy with ICT based network management, a control plane overlay for the modern smart grid. Policy-based Network Management (PBNM) is widely deployed in managed telecoms networks. We outline how PBNM can augment the management of power and energy networks and report on our initial work to validate the approach. To configure the PBNM system, we have used text mining to derive connection parameters at the LV level. In our simulations, PBNM was used in collaboration with a Volt-VAr optimisation (VVO) to tune the connection settings at each DER to manage the voltage across all the buses. We argue that the full benefits will be realised when stakeholders focus on agreeing relatively stable high-level connection policies, the policies being refined dynamically, and algorithms such as VVO that set connection parameters so they are consistent with those high-level policies. Thus faults, power quality issues and regulatory infringement can be identified sooner, and power flow can be optimised

    D2.1 SPECIFICATION OF INTEROPERABLE APIS FOR THE PLANNING TOOL : VERSION 1.0

    No full text
    The ANM4L (Active network management for all) project. This project has received funding in the framework of the joint programming initiative ERA-Net Smart Energy Systems, with support from the European Union’s Horizon 2020 research and innovation programme.</p

    D2.1 SPECIFICATION OF INTEROPERABLE APIS FOR THE PLANNING TOOL : VERSION 1.0

    No full text
    The ANM4L (Active network management for all) project. This project has received funding in the framework of the joint programming initiative ERA-Net Smart Energy Systems, with support from the European Union’s Horizon 2020 research and innovation programme.</p

    A multi-level approach to power system modelica models

    No full text

    Application of backsteppping to MVDC ship power systems with constant power loads

    No full text

    DPsim—Advancements in Power Electronics Modelling Using Shifted Frequency Analysis and in Real-Time Simulation Capability by Parallelization

    No full text
    Real-time simulation is an increasingly popular tool for product development and research in power systems. However, commercial simulators are still quite exclusive due to their costs and they face problems in bridging the gap between two common types of power system simulation, conventional phasor based, and electromagnetic transient simulation. This work describes recent improvements to the open source real-time simulator DPsim to address increasingly important use cases that involve power electronics that are connected to the electrical grid and increasing grid sizes. New power electronic models have been developed and integrated into the DPsim simulator together with techniques to decouple the system solution, which facilitate parallelization. The results show that the dynamic phasors in DPsim, which result from shifted frequency analysis, allow the user to combine the characteristics of conventional phasor and electromagnetic transient simulation. Besides, simulation speed up techniques that are known from the electromagnetic domain and new techniques, specific to dynamic phasors, significantly improve the performance. It demonstrates the advantages of dynamic phasor simulation for future power systems and the applicability of this concept to large scale scenarios
    corecore