199 research outputs found

    Integrated controls and health monitoring for chemical transfer propulsion

    Get PDF
    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed

    A candidate architecture for monitoring and control in chemical transfer propulsion systems

    Get PDF
    To support the exploration of space, a reusable space-based rocket engine must be developed. This engine must sustain superior operability and man-rated levels of reliability over several missions with limited maintenance or inspection between flights. To meet these requirements, an expander cycle engine incorporating a highly capable control and health monitoring system is planned. Alternatives for the functional organization and the implementation architecture of the engine's monitoring and control system are discussed. On the basis of this discussion, a decentralized architecture is favored. The trade-offs between several implementation options are outlined and future work is proposed

    Double-stranded RNA elements associated with the MVX disease of Agaricus bisporus

    Get PDF
    Double-stranded RNA (dsRNA) has been isolated from Agaricus bisporus fruit bodies exhibiting a wide range of disease symptoms. The symptoms which occurred singularly or in combination included; bare cropping areas on commercial beds (primordia disruption), crop delay, premature veil opening, off- or brown-coloured mushrooms, sporophore malformations and loss of crop yield. All symptoms were associated with loss of yield and/or product quality. Collectively, these symptoms are described as mushroom virus X (MVX) disease. The dsRNA titre was much lower than that previously encountered with the La France viral disease of mushrooms and a modified cellulose CF11 protocol was used for their detection. A broad survey of cultivated mushrooms from the British industry identified dsRNA elements ranging between 640 bp and 20.2 kbp; the majority have not previously been described in A. bisporus. 26 dsRNA elements were identified with a maximum of 17, apparently non-encapsidated dsRNA elements, in any one sample. Three dsRNAs (16.2, 9.4 and 2.4 kbp) were routinely found in mushrooms asymptomatic for MVX. Previously, La France disease was effectively contained and controlled by minimising the on-farm production and spread of basidiospores. Our on-farm observations suggest that MVX could be spread by infected spores and/or mycelial fragments

    The 15 years of comet photometry: A comparative analysis of 80 comets

    Get PDF
    In 1976, a program of narrowband photometry of comets was initiated that has encompassed well over 400 nights of observations. To date, the program has provided detailed information on 80 comets, 11 of which were observed during multiple apparitions. The filters (initially isolating CN, C2, and continuum and later including C3, OH, and NH) as well as the detectors used for the observations were changed over time, and the parameters adopted in the reduction and modeling of the data have likewise evolved. Accordingly, we have re-reduced the entire database and have derived production rates using current values for scalelengths and fluorescence efficiencies. Having completed this task, the results for different comets can now be meaningfully compared. The general characteristics that are discussed include ranges in composition (molecular production rate ratios) and dustiness (gas production compared with Af(rho)). Additionally an analysis of trends on how the production rates vary with heliocentric distance and on pre- and post-perihelion asymmetries in the production rates of individual comets. Possible taxonomic groupings are also described

    Femoral Morphology Due to Impingement Influences the Range of Motion in Slipped Capital Femoral Epiphysis

    Get PDF
    Femoroacetabular impingement due to metaphyseal prominence is associated with the slippage in patients with slipped capital femoral epiphysis (SCFE), but it is unclear whether the changes in femoral metaphysis morphology are associated with range of motion (ROM) changes or type of impingement. We asked whether the femoral head-neck junction morphology influences ROM analysis and type of impingement in addition to the slip angle and the acetabular version. We analyzed in 31 patients with SCFE the relationship between the proximal femoral morphology and limitation in ROM due to impingement based on simulated ROM of preoperative CT data. The ROM was analyzed in relation to degree of slippage, femoral metaphysis morphology, acetabular version, and pathomechanical terms of "impaction” and "inclusion.” The ROM in the affected hips was comparable to that in the unaffected hips for mild slippage and decreased for slippage of more than 30°. The limitation correlated with changes in the metaphysic morphology and changed acetabular version. Decreased head-neck offset in hips with slip angles between 30° and 50° had restricted ROM to nearly the same degree as in severe SCFE. Therefore, in addition to the slip angle, the femoral metaphysis morphology should be used as criteria for reconstructive surger

    Optical Signatures of Dirac Nodal-lines in NbAs2_2

    Full text link
    Using polarized optical and magneto-optical spectroscopy, we have demonstrated universal aspects of electrodynamics associated with Dirac nodal-lines. We investigated anisotropic electrodynamics of NbAs2_2 where the spin-orbit interaction triggers energy gaps along the nodal-lines, which manifest as sharp steps in the optical conductivity spectra. We show experimentally and theoretically that shifted 2D Dirac nodal-lines feature linear scaling σ1(ω)ω\sigma_1 (\omega)\sim\omega, similar to 3D nodal-points. Massive Dirac nature of the nodal-lines are confirmed by magneto-optical data, which may also be indicative of theoretically predicted surface states. Optical data also offer a natural explanation for the giant magneto-resistance in NbAs2_2

    Machine Learning for Optical Scanning Probe Nanoscopy

    Full text link
    The ability to perform nanometer-scale optical imaging and spectroscopy is key to deciphering the low-energy effects in quantum materials, as well as vibrational fingerprints in planetary and extraterrestrial particles, catalytic substances, and aqueous biological samples. The scattering-type scanning near-field optical microscopy (s-SNOM) technique has recently spread to many research fields and enabled notable discoveries. In this brief perspective, we show that the s-SNOM, together with scanning probe research in general, can benefit in many ways from artificial intelligence (AI) and machine learning (ML) algorithms. We show that, with the help of AI- and ML-enhanced data acquisition and analysis, scanning probe optical nanoscopy is poised to become more efficient, accurate, and intelligent
    corecore