4,642 research outputs found

    AN ALTERNATIVE APPROACH TO DETERMINING THE ELASTICITY OF EXCESS DEMAND FACING THE UNITED STATES

    Get PDF
    The United States embarked on a policy assuming excess demands for commodities are elastic. Some analysts question the success of that policy and argue that excess demands for farm commodities are inelastic. The controversy is deepened because the two traditional techniques for determining excess demand elasticities yield opposing estimates. We use an alternative technique based on observed variation in commodity prices, production, and use. The point estimates show excess demands for wheat, coarse grains, soybeans, rice, and cotton are elastic. However, a one-sided bootstrap test cannot reject the null hypothesis that the excess demands for wheat, coarse grains, and soybeans are inelastic.Demand and Price Analysis,

    State and Local Prevalence of Firearms Ownership: Measurement, Structure, and Trends

    Get PDF
    Of the readily computed proxies for the prevalence of gun ownership, one, the percentage of suicides committed with a gun, performs consistently better than the others in cross-section comparisons. It is readily computed for states and counties and has a high degree of validity when tested against survey-based estimates. It also appears valid as a proxy for changes over time in gun prevalence, at least at the regional level. Our analysis of this proxy measure for the period 1979-1997 demonstrates that the geographic structure of gun ownership has been highly stable. That structure is closely linked to rural tradition. There is, however, some tendency toward homogenization over this period, with high-prevalence states trending down and low-prevalence states trending up.

    The Prediction of Broadband Shock-Associated Noise Including Propagation Effects

    Get PDF
    An acoustic analogy is developed based on the Euler equations for broadband shock- associated noise (BBSAN) that directly incorporates the vector Green's function of the linearized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) as the mean flow. The vector Green's function allows the BBSAN propagation through the jet shear layer to be determined. The large-scale coherent turbulence is modeled by two-point second order velocity cross-correlations. Turbulent length and time scales are related to the turbulent kinetic energy and dissipation. An adjoint vector Green's function solver is implemented to determine the vector Green's function based on a locally parallel mean flow at streamwise locations of the SRANS solution. However, the developed acoustic analogy could easily be based on any adjoint vector Green's function solver, such as one that makes no assumptions about the mean flow. The newly developed acoustic analogy can be simplified to one that uses the Green's function associated with the Helmholtz equation, which is consistent with the formulation of Morris and Miller (AIAAJ 2010). A large number of predictions are generated using three different nozzles over a wide range of fully expanded Mach numbers and jet stagnation temperatures. These predictions are compared with experimental data from multiple jet noise labs. In addition, two models for the so-called 'fine-scale' mixing noise are included in the comparisons. Improved BBSAN predictions are obtained relative to other models that do not include the propagation effects, especially in the upstream direction of the jet

    Space and time on the membrane:modelling Type VI secretion system dynamics as a state-dependent random walk

    Get PDF
    The type six secretion system (T6SS) is a transmembrane protein complex that mediates bacterial cell killing. The T6SS comprises three main components (transmembrane, baseplate and sheath/tube complexes) that are sequentially assembled in order to enable an attacking cell to transport payloads into neighbouring cells. A T6SS attack disrupts the function of essential cellular components of target cells, typically resulting in their death. While the assembled T6SS adopts a fixed position in the cell membrane of the attacking cell, the location of the firing site varies between firing events. In Serratia marcescens, a post-translational regulatory network regulates the assembly and firing kinetics of the T6SS in a manner that affects the attacking cell's ability to kill target cells. Moreover, when the ability of membrane complexes to reorient is reduced, an attacking cell's competitiveness is also reduced. In this study, we will develop a mathematical model that describes both the spatial motion and assembly/disassembly of a firing T6SS. The model represents the motion of a T6SS on the cell membrane as a state-dependent random walk. Using the model, we will explore how both spatial and temporal effects can combine to give rise to different firing phenotypes. Using parameters inferred from the available literature, we show that variation in estimated diffusion coefficients is sufficient to give rise to either spatially local or global firers.</p

    The Prediction of Broadband Shock-Associated Noise from Dualstream and Rectangular Jets Using RANS CFD

    Get PDF
    Supersonic jets operating off-design produce broadband shock-associated noise. Broadband shock-associated noise is characterized by multiple broadband peaks in the far-field and is often the dominant source of noise towards the sideline and upstream direction relative to the jet axis. It is due to large scale coherent turbulence structures in the jet shear layers interacting with the shock cell structure. A broadband shock-associated noise model recently developed by the authors predicts this noise component from solutions to the Reynolds averaged Navier-Stokes equations using a two-equation turbulence model. The broadband shock-associated noise model is applied to dualstream and rectangular nozzles operating supersonically, heated, and off-design. The dualstream jet broadband shock-associated noise predictions are conducted for cases when the core jet is supersonic and the fan jet is subsonic, the core jet is subsonic and the fan jet is supersonic, and when both jet streams operate supersonically. Rectangular jet predictions are shown for a convergent-divergent nozzle operating both over- and under-expanded for cold and heated conditions. The original model implementation has been heavily modified to make accurate predictions for the dualstream jets. It is also argued that for over-expanded jets the oblique shock wave attached to the nozzle lip contributes little to broadband shock-associated noise. All predictions are compared with experiments

    Prediction of Broadband Shock-Associated Noise Including Propagation Effects Originating NASA

    Get PDF
    An acoustic analogy is developed based on the Euler equations for broadband shock-associated noise (BBSAN) that directly incorporates the vector Green s function of the linearized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) to describe the mean flow. The vector Green s function allows the BBSAN propagation through the jet shear layer to be determined. The large-scale coherent turbulence is modeled by two-point second order velocity cross-correlations. Turbulent length and time scales are related to the turbulent kinetic energy and dissipation rate. An adjoint vector Green s function solver is implemented to determine the vector Green s function based on a locally parallel mean flow at different streamwise locations. The newly developed acoustic analogy can be simplified to one that uses the Green s function associated with the Helmholtz equation, which is consistent with a previous formulation by the authors. A large number of predictions are generated using three different nozzles over a wide range of fully-expanded jet Mach numbers and jet stagnation temperatures. These predictions are compared with experimental data from multiple jet noise experimental facilities. In addition, two models for the so-called fine-scale mixing noise are included in the comparisons. Improved BBSAN predictions are obtained relative to other models that do not include propagation effects

    Optical studies of the ultraluminous X-ray source NGC1313 X-2

    Full text link
    NGC1313 X-2 was among the first ultraluminous X-ray sources discovered, and has been a frequent target of X-ray and optical observations. Using the HST/ACS multi-band observations, this source is identified with a unique counterpart within an error circle of 0\farcs2. The counterpart is a blue star on the edge of a young cluster of 107\le10^7 years amid a dominant old stellar population. Its spectral energy distribution is consistent with that for a Z=0.004 star with 8.5 MM_\odot about 5×1065\times10^6 years old, or for an O7 V star at solar metallicity. The counterpart exhibited significant variability of Δm=0.153±0.033\Delta m = 0.153\pm0.033 mag between two F555W observations separated by three months, reminiscent of the ellipsoidal variability due to the orbital motion of this ULX binary.Comment: 21 pages, 7 figures, scheduled for the ApJ June 10, 2007, v662n 1 issu

    Estimating correlation between multivariate longitudinal data in the presence of heterogeneity

    Get PDF
    Abstract Background Estimating correlation coefficients among outcomes is one of the most important analytical tasks in epidemiological and clinical research. Availability of multivariate longitudinal data presents a unique opportunity to assess joint evolution of outcomes over time. Bivariate linear mixed model (BLMM) provides a versatile tool with regard to assessing correlation. However, BLMMs often assume that all individuals are drawn from a single homogenous population where the individual trajectories are distributed smoothly around population average. Methods Using longitudinal mean deviation (MD) and visual acuity (VA) from the Ocular Hypertension Treatment Study (OHTS), we demonstrated strategies to better understand the correlation between multivariate longitudinal data in the presence of potential heterogeneity. Conditional correlation (i.e., marginal correlation given random effects) was calculated to describe how the association between longitudinal outcomes evolved over time within specific subpopulation. The impact of heterogeneity on correlation was also assessed by simulated data. Results There was a significant positive correlation in both random intercepts (ρ = 0.278, 95% CI: 0.121–0.420) and random slopes (ρ = 0.579, 95% CI: 0.349–0.810) between longitudinal MD and VA, and the strength of correlation constantly increased over time. However, conditional correlation and simulation studies revealed that the correlation was induced primarily by participants with rapid deteriorating MD who only accounted for a small fraction of total samples. Conclusion Conditional correlation given random effects provides a robust estimate to describe the correlation between multivariate longitudinal data in the presence of unobserved heterogeneity (NCT00000125)
    corecore