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ABSTRACT
An acoustic analogy is developed based on the Euler equations for broadband shock-associated
noise (BBSAN) that directly incorporates the vector Green’s function of the linearized Euler
equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) to describe the
mean flow. The vector Green’s function allows the BBSAN propagation through the jet shear
layer to be determined. The large-scale coherent turbulence is modeled by two-point second
order velocity cross-correlations. Turbulent length and time scales are related to the turbulent
kinetic energy and dissipation rate. An adjoint vector Green’s function solver is implemented to
determine the vector Green’s function based on a locally parallel mean flow at different
streamwise locations. The newly developed acoustic analogy can be simplified to one that uses
the Green’s function associated with the Helmholtz equation, which is consistent with a previous
formulation by the authors. A large number of predictions are generated using three different
nozzles over a wide range of fully-expanded jet Mach numbers and jet stagnation temperatures.
These predictions are compared with experimental data from multiple jet noise experimental
facilities. In addition, two models for the so-called ‘fine-scale’ mixing noise are included in the
comparisons. Improved BBSAN predictions are obtained relative to other models that do not
include propagation effects.
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PERSONAL INTRODUCTION (PJM)
It is an honor to be invited to contribute an article to this special edition in honor of 
Dr. J. M. (Jack) Seiner. The present paper concerns the predictions of broadband shock-
associated noise (BBSAN). Jack made seminal contributions to the present
understanding of BBSAN with his extensive experimental studies with his colleagues
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at NASA Langley Research Center - among others, Jim Yu, Tom Norum, Mike Ponton
and Bernie Jansen. Under Jack’s leadership this excellent team produced an extensive
noise database that has provided guidance in the development of BBSAN models ( see
Tam and Tanna [1], Tam [2], Tam [3], and the present authors’ contribution [4]). In
addition, Jack’s measurements provided the foundation for the concepts of the Large-
Scale and Fine-Scale Similarity Spectra [5] and the different noise generation
mechanisms associated with each of them. Last, and far from least, was Jack’s
commitment to research that would have a tangible beneficial effect on society and also
provide support for the Armed Forces. To that end, Jack focused a great deal of attention
in recent years on methods for the reduction of noise from high performance military
aircraft engines. Jack and his colleagues conducted extensive model and flight tests. He
also invented and patented a noise reduction concept based on removable corrugated
seals [6]. This device reduced both BBSAN and mixing noise at take-off conditions.

At the later stages of his career, after moving from the NASA Langley Research
Center to the University of Mississippi, Jack took on the daunting task of designing and
building a new heated jet anechoic facility. As with everything to which Jack turned his
hand, this facility is now one of the premier aeroacoustics research laboratories in the
world.

Jack was a good friend and companion to me as well as many other researchers, old
and young alike. He never held back from offering his opinion on your work or ideas -
and he didn’t always agree with your approach. But he would generally be correct, and
you would have to be a fool not to listen carefully to his criticism, opinions and advice.

Jack and I shared many travels, beers, and fishing trips together. He was always fun
to be around. But he didn’t suffer fools gladly. The aeroacoustics community has lost a
giant and a champion, and his presence is already being missed. Thank you Jack for all
the good times.

1. INTRODUCTION
Broadband shock-associated noise (BBSAN) is present in supersonic jets when the jet
is operating off-design. This occurs due to a difference between the static pressure at the
nozzle exit and the ambient pressure. Nozzles that operate at the nominal on-design
pressure ratio can also create a periodic shock cell structure in the jet plume if the
characteristic waves are not canceled by the nozzle walls or the flow separates inside the
nozzle. BBSAN occurs in nozzles that are both convergent or convergent-divergent
when the flow is either over- or under-expanded. The interaction between the large-scale
coherent turbulence in the jet shear layer and the shock cells is the source of shock-
associated noise. BBSAN is observed in the far-field as a broad spectral peak and
dominates the mixing noise levels at large angles from the downstream centerline axis.
The peak frequency is a function of the jet shock cell spacing, the convection velocity
of the jet shear layer turbulence, and observer location. The amplitude of BBSAN
depends on the ratio of observer distance to the jet diameter, the polar and azimuthal
observer angles, the geometry of the nozzle, the degree of off-design operation, and to
a lesser degree, the stagnation temperature. The degree of off-design operation is
represented by the off-design parameter, which is defined by β = M2

j − M 2
d1/2. Mj is
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the fully-expanded jet Mach number, which depends on the nozzle pressure ratio and
the ratio of specific heats, and Md is the nozzle design Mach number, which depends
on the nozzle throat to exit area ratio.

Harper-Bourne and Fisher [7] performed one of the first investigations of BBSAN
and developed the first prediction methodology for BBSAN. Their proposition was
that BBSAN depends on the nearly coherent interaction between the turbulence in the
jet shear layer and the jet’s nearly periodic shock cell structure. This can be modeled
as a series of correlated point sources that radiate either constructively or destructively.
Harper-Bourne and Fisher’s prediction scheme depends on knowledge of the rate of
decay of the turbulence correlation between shocks, as well as the characteristic
spectral shape of the radiated noise generated by each interaction. These were
obtained using a least squares procedure to match the model with experimental noise
measurements. The method is used in the SAE ARP876 [8] prediction method for
single stream shock-associated noise from convergent nozzles at supercritical
conditions and is included as a prediction module in NASA’s Aircraft Noise
Prediction Program (ANOPP) [9]. Harper-Bourne and Fisher’s model [7] predicted
the peak frequency of BBSAN as a function of observer angle, convective Mach
number, and shock cell spacing.

Tam [2] developed a different method for BBSAN prediction. The basic physical
model is described by Tam and Tanna [1]. Tam argued that the shock cell structure in
the jet could be modeled, following the work of Pack [10], as a waveguide, where the
waves are forced by the pressure imbalance at the jet exit and are confined by the jet
shear layer. The simplest model that can be used for the jet is a vortex sheet. The effects
of the slow divergence of the jet and the dissipative effects of the turbulence on the
shock cells can also be included in the same general framework as shown by Tam et al.
[11] The large-scale turbulence in the jet shear layer is modeled as a random
superposition of instability waves supported by the jet mean flow, as described by Tam
and Chen [12]. The interaction between the downstream traveling instability waves and
the nearly periodic shock cell structure results in an interference pattern of traveling
waves. The phase velocity of these waves can be higher than that of the instability waves
alone and gives rise to noise radiation at large angles to the jet downstream axis,
including the upstream direction. Since there is a random set of instability waves
interacting with the shock cells, the resulting radiation pattern involves broad lobes
rather than a sharply directional radiation. Empirical formulas are used to represent the
shock cell spacing, the convection velocity of the turbulence, and the spectral width of
the measured noise data. The predictions give good agreement with noise measurements
in both the jet’s near- and far-fields and certain key features of the measured spectra are
captured. These include the variation of the frequency of the broadband spectral peak
with observer location (the same formula obtained by the Harper-Bourne and Fisher [7]
model), the narrowing of the width of the noise spectrum as the observer moves towards
the jet upstream direction, and the presence of multiple lobes in the near-field and far-
field noise spectra.

Tam [3] modified the model by Tam [2] to include the prediction of BBSAN from
heated jets up to a moderate off-design parameter. This was accomplished by better
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approximating the shock cell spacing and strength. A temperature correction factor, T ′cf
was included to correct the over-prediction at all frequencies that occurred with increasing
total temperature ratio (TTR). Another important modification was the use of different
scaling factors that were dependent on whether the jet was over- or under-expanded.

Morris and Miller [4] developed a prediction method for BBSAN that uses a RANS
CFD solution for the properties of the flow-field. Sources are modeled using
dimensional arguments that scale as the shock pressure, turbulent velocity fluctuations,
and an integral length scale of turbulence in the jet shear layer. The cross-correlation of
the jet turbulence is modeled in a separable form, as first suggested by Ribner [13],
which scales with the turbulent kinetic energy. The final closed form model equation is
a volume integral over the jet plume and a single integral of the shock cell pressure
wavenumber spectrum. All the quantities in the closed form model equation can be
found based on a steady Reynolds-Averaged Navier-Stokes (SRANS) solution. Simple
models relate the turbulence quantities to the SRANS solution.

The model by Morris and Miller [4] has been applied to dualstream and rectangular
jets by Miller and Morris [14]. This work demonstrated the first BBSAN predictions of
dualstream jets using an acoustic analogy. However, the approximation that the mean
flow has negligible effect on the noise is not appropriate for dualstream jets if the
dominant shock noise is from interactions between the primary shear layer turbulence
and the shock cells. This is due to the refraction effects of the secondary stream shear
layer. Miller and Morris [14] also demonstrated the first rectangular nozzle BBSAN
predictions based on SRANS solutions. The developed model equation makes no
assumption regarding the geometry of the nozzle and is not limited to rectangular or
circular geometries.

Kuo et al. [15] performed experimental studies of various jets operating at off-design
conditions and various total temperature ratios. The effects of these variations in
temperature were compared to the far-field spectra in an attempt to find scaling laws of
BBSAN. A simple empirical model was constructed to fit individual spectral shapes at
various operating conditions. As with the model of Tam [2], the BBSAN spectra are
chosen to consist of Gaussian-like peaks. Recently Viswanathan et al. [16] measured
the saturation of BBSAN with stagnation temperature and separated the turbulent
mixing noise from the BBSAN.

In the present paper an acoustic analogy is developed that is based on the Euler
equations for the prediction of BBSAN. The propagation is addressed through the use
of the vector Green’s function to the linearized Euler equations as a component of the
solution to the acoustic analogy. Any adjoint vector Green’s function solver for the
linearized Euler equations could be used in the solution. In the present work the vector
Green’s function is found numerically by using a locally parallel flow assumption that
is similar to the approach of Tam and Auriault [17], Raizada [18], and Khavaran et al.
[19]. Predictions using the newly developed BBSAN model are compared with the
previous model by Morris and Miller [4] and experimental data from the National
Aeronautics and Space Administration (NASA), the Pennsylvania State University
(PSU), and the Boeing Company.
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In addition to the prediction of BBSAN, the prediction of so-called ‘fine-scale’
mixing noise is also performed. The fine-scale mixing noise component radiates in all
directions from the jet but is overshadowed by the noise from large-scale structures in
the downstream direction and partially by the BBSAN in the sideline directions. It
occurs at all jet Mach numbers. In the present paper the fine-scale mixing noise models
of Tam and Auriault [20] and Morris and Boluriaan [21] are used. These fine-scale
mixing noise models are simple to implement in the developed computer code RANS
Integration for Shock Noise (RISN) due to their modular nature and the similar
arguments used by the BBSAN model. The fine-scale mixing noise models use the same
form of the vector Green’s function that are used in the new BBSAN model described
below. The combination of fine-scale mixing and BBSAN predictions yields a partial
prediction of the total noise created by off-design supersonic heated jets. However, it
should be noted that no model is included for the large-scale mixing noise in the peak
noise radiation direction.

The next section describes the development of the new BBSAN prediction model in
detail. Details regarding the implementation of the BBSAN model in RISN are given.
The determination of the various parameters in the models and the evaluation of the
models themselves are then described. Extensive predictions are performed using the
RISN code and comparisons are made with experimental data. A wide range of design
Mach numbers and operating conditions are selected to compare the predictions with
experiment. Finally, conclusions are drawn based on the comparisons between the
BBSAN predictions and measurements.

2. PHYSICAL AND MATHEMATICAL BBSAN MODEL
Mean flow effects in the BBSAN model of Morris and Miller [4] are neglected, and an
approximation of the vector Green’s function of the linearized Euler equations is used.
This involves assuming that the vector Green’s function for the linearized Euler
equations is related to the Green’s function of the Helmholtz equation, which does not
include mean flow effects. In the present paper, the vector Green’s function of the
linearized Euler equations is determined from the solutions to Lilley’s equation. It can
be shown that the present model, when the previous simplified form of the vector
Green’s functions is inserted, reduces to the model originally developed by Morris and
Miller [4]. The new prediction method has the same advantages as the previous model,
but takes into account the mean flow effects that are present and particularly important
in dualstream jets.

A vector Green’s function solver for the linearized Euler equations is required to
complete the newly developed prediction model. Tam and Auriault [20] and Karabasov
et al. [22] have developed a three-dimensional adjoint solver for the linearized Euler
equations for a general mean flow. However, here, a simpler approach is adopted by the
authors that is based on a locally parallel flow approximation. Tam and Auriault [17]
examined mean flow refraction effects for sound radiation from jets using parallel and
diverging mean flows. They found that outside the cone of silence the parallel flow
assumption yields highly accurate solutions relative to the diverging jet solution. Care
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must be taken when interpreting refraction effects when the observer is within the cone
of silence. At each streamwise location of the jet, mean flow properties are extracted
from the SRANS solution to calculate the Green’s function of Lilley’s equation. This is
obtained from a numerical solution of a single differential equation. As shown below,
the Green’s function of Lilley’s equation can be used to calculate the vector Green’s
function of the linearized Euler equations. This step is performed at each streamwise
location for each observer angle and frequency.

The governing equations chosen to form the acoustic analogy are the Euler
equations. This is similar to the approach developed by Tam [2]. Tam’s analysis is
considerably simplified if the following form of the inviscid compressible equations of
motion are used,

(1)

(2)

where D is the material derivative, c is the local speed of sound, t is time, and vi are the
velocity components in the xi directions of a Cartesian coordinate system. π is related to
the logarithm of the pressure,

(3)

where p is the pressure, p∞ is the ambient pressure, and γ is the ratio of specific heats
of an ideal gas.

Following Tam [2], the instantaneous flow-field properties are separated into four
components. That is,

(4)

where the overbar denotes the long time averaged value, the subscript s denotes the
perturbations associated with the shock cell structure, the subscript t denotes the
fluctuations associated with the turbulence, and the primes denote the fluctuations
generated by the interaction of the turbulence and the shock cell structure. It is assumed
that the shock cell structure satisfies the steady linearized version of Eqns. 1 and 2. In
addition, it is assumed that the unsteady linearized version of these equations is also
satisfied by the turbulent velocity fluctuations. This is justified if the important
components of the turbulence, so far as the broadband shock-associated noise is
concerned, are coherent over relatively large axial distances. These components are
described well by a linear instability wave model.
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Making these assumptions, the inhomogeneous equations for the fluctuations
associated with the interaction of the turbulence with the shock cells can be written,

(5)

(6)

The terms on the left hand side of Eqns. 5 and 6 are the linearized Euler equations
in terms of the perturbation quantities π′ and v ′i . The terms that appear on the right hand
sides represent the equivalent sources of the BBSAN. They are defined by,

(7)

(8)

(9)

where θ is a dilatation rate generated by the interaction between the pressure gradients
and velocity perturbations of the turbulence and the shock cells. fi

v is the unsteady force
per unit volume associated with interactions between the turbulent velocity fluctuations
and the velocity perturbations associated with the shock cells. Finally, fi

a is the unsteady
force per unit volume related to the interaction of fluctuations in the sound speed 
(or temperature), caused by the turbulence and the shock cells, and the associated
pressure gradients. In traditional approaches to turbulent mixing noise models these
equivalent sources have been treated separately and the same assumption is made here.
The solution to Eqns. 5 and 6, can be written in terms of the vector Green’s function that
satisfies the equations,
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where πn
g = πn

g (x–, y– , t – τ) and v n
gi = v n

gi (x–, y–, t – τ) are the components of the vector
Green’s function, equivalent to π′ and v ′i in the general homogeneous problem. 
x– denotes the observer position, y– denotes the source location, δ( ) is the Dirac delta
function, and τ is the source emission time. δij is the Kronecker delta function. For small
perturbation pressures, π′ � p′/γp∞ = p′/ρ∞c2

∞. Then the solution for the pressure 
p′(x– , t ) can be written,

(12)

The periodic Green’s function is also introduced, given by,

(13)

(14)

From this point, only the source term associated with the velocity perturbations will
be considered. It is expected that the scaling of the other source terms would be similar.
The exception would be the source term associated with the temperature fluctuations.
However, the importance of this term still remains the subject of debate in the prediction
of turbulent mixing noise in heated jets. So, this term will not be considered further.
Then, the pressure fluctuation is given by,

(15)
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The spectral density is given by the Fourier transform of the autocorrelation of the
pressure,

(17)

The integration with respect to τ* can be performed immediately.
Before proceeding it is necessary to examine the form of the two-point cross-

correlation of f n
v . It is dependent on the strength of the shock cells and the turbulent

fluctuations and its product is significant in regions where the shocks and expansions
intersect with the turbulent shear layer. The amplitude of f n

v will be proportional to the
shock cell pressure perturbations and the turbulent velocity fluctuations. It is assumed
that the two-point cross-correlation function of the BBSAN source term can be written
in terms of separation distance η– = z– – y– and separation time τ = τ2 − τ1. Then,
following integrations with respect to τ1, ω1 and ω2, we can write,

(18)

where Rv
nm is the two-point cross-correlation of the equivalent source term f v

n ,

(19)

The SRANS solution does not provide any information about the form of f v
n , so a

model for Rv
nm is constructed as,

(20)

where Rnm is the two-point cross correlation function of the turbulent velocity
fluctuations in the n and m directions and l is a characteristic length scale in the axial
direction. Over the distance where the spatial correlation is significant we assume that,
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(22)

where the asterisk denotes a complex conjugate. Then,

(23)

One of the shock cell pressure distributions is now represented in terms of its axial
wavenumber spectrum,

(24)

and the corresponding inverse Fourier transform is,
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fluctuations. That is,
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In Morris and Miller [4] it was assumed that the shock cell structure was independent
of the cross-stream distance over the distance where Rnm remained significant. From an
examination of the wavenumber spectrum as a function of r, this appears to be a
reasonable assumption. Obviously, in the azimuthal direction for axisymmetric jets this
is also true. So, we can replace p~s(k1, y2 + η, y3 + ζ ) by p~s(k1, y2 , y3) as before. Then
the integrations with respect to τ, ω*, η–, and k–

* can be performed. This gives,

In Eqn. 29 the wavenumber frequency spectrum of the turbulent velocity fluctuations
is to be evaluated at an axial wavenumber k1

* = (ωx1/c∞x – k1). In turn, the axial
wavenumber spectrum of the shock cell structure will be dominated by bands centered
around wavenumbers corresponding to the fundamental shock cell spacing and its
harmonics. This includes both positive and negative axial wavenumbers. The peak
amplitude of the turbulent velocity wavenumber frequency spectrum will occur close to
where k1

* = ω/uc , where uc is the convection velocity of the turbulence. Thus the peak
frequency in the radiated noise spectrum will vary as,

(30)

This gives a peak frequency variation of,

(31)

where L is the fundamental shock cell wavelength or spacing and Mc = uc/c∞. It
should be noted that because of the sign convention used in the spatial Fourier
transforms, the dominant noise contributions occur for negative values of k1.
Equation 31 is identical to the formula given by Harper-Bourne and Fisher [7] based
on a coherent point source model and Tam and Tanna [1] based on an instability wave
model.

Now, consider the form of the two-point cross-correlations of the velocity
fluctuations. For simplicity it will be assumed that they all have the same shape, but
the amplitude will vary depending on the component. This is consistent with the
approach used by Karabasov et al. [23] for the fourth-order cross-correlations. It can
be expressed as,
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(32)

where K is the turbulent kinetic energy and anm reflects the relative amplitudes of the
different components of the second-order cross-correlation. The form chosen for 
R(η_, τ) is the same as used before by Morris and Miller [4]. That is,

(33)

where it is assumed that the convection velocity is approximated well by the local mean
velocity in regions of large values of K. From the definition of Snm(y–, k–

*, ω) given by
Eqn. 27 it can be shown that,

(34)

Setting x_ = x (cos θ, sin θ cos φ, sin θ sin φ) the spectral density can be shown to
be given by,

Equation 35 represents an acoustic analogy based on the Euler equations that uses
the vector Green’s function of the linearized Euler equations to predict BBSAN.
Appendix A shows that this expression reduces to the result by Morris and Miller [4]
when the vector Green’s function based on the Helmholtz equation and an isotropic
source model are used.

Evaluation of Eqn. 35 requires knowledge of the vector Green’s function of the
linearized Euler equations. An adjoint approach is followed here which shortens the
calculation time greatly. This approach is based on the work of Tam and Auriault [17]
and Raizada [18]. Assuming a locally parallel mean flow, q = q (y, z), where q
represents the field-variables, the adjoint Green’s function can be written,
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where m is an azimuthal mode number. Equation 36 is valid inside the jet (r < Ro).
There is no concern about solutions outside the jet as sources of BBSAN do not exist
in that region. The quantity fm is found for each mode m by solving the following
differential equation in the region 0 < r < Ro,

As shown by Tam and Auriault [17], the solution near the centerline (r � ε ) is fm =
amrm. Using this expression, the boundary conditions at the centerline of the jet are
specified and a spatial marching problem in the radial direction can be formed at each
streamwise location. The details of the marching methods used are discussed in the next
section. For each radial mode m, fm needs to be scaled so that the inner-solution
matches the outer-solution of ga at r = Ro. Raizada [18] showed that the scaling factor
is given by,

(38)

where εm = 1 for m = 1 and εm = 2 for all other values of m. λ = ω sin θ/c∞, and the
primes denote a derivative of the Hankel function or fm with respect to their arguments.
The vector Green’s function of the linearized Euler equations is related to the Green’s
function of Lilley’s equation, g (x– , y– , ω), by,
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where y_ = (yr, yθ, yx) denotes the source position in cylindrical polar coordinates. The
reciprocal relation of g = ga holds true for this formulation of the adjoint Green’s
function. Equations 39 through 42 require various terms involving derivatives of the
Green’s function to Lilley’s equation. These expressions are found analytically based on
the numerical calculation of g. The various derivatives of g used in Eqns. 39 through 42
with respect to the various spatial directions are,

(43)

(44)

(45)

(46)

Equations 43 through 46 are used with Eqns. 39 through 42 to find the components
of the required vector Green’s function at different streamwise locations. Equations 39
through 42 and their corresponding complex conjugates can be used in the evaluation of
Eqn. 35.

3. IMPLEMENTATION
The mathematical model developed in the previous section is implemented in the
computer program RANS Integration for Shock Noise (RISN). RISN is a collection of
jet noise prediction models that are based on various acoustic analogies and is being
developed at NASA Langley Research Center (LaRC). The several prediction
methodologies allow total noise predictions based on a summation of jet noise
components from axisymmetric or three dimensional jet flowfields that are heated, off-
design, and compressible. Acoustic analogies are developed for each noise source (eg:
BBSAN, fine - and large-scale mixing noise, screech, etc.) and the sources and
propagation are treated separately.

The implementation of the model in the absence of propagation effects is described
fully in Morris and Miller [4]. The model developed in the present paper is
implemented using the same strategy but with an additional subroutine to calculate
the vector Green’s functions. The model Eqn. 35 is evaluated for each observer
position x_. This involves an integration over the sources of BBSAN in the jet plume.
That is, where the turbulence is interacting with the oblique shock waves in the shear
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layer. The range of integration in the streamwise direction (for single stream jets) is
generally taken to extend from the nozzle exit to the end of the potential core and in
the cross-stream direction from the centerline axis through twice the nozzle diameter.
The integral associated with the axial wavenumber k1, is performed by using the
trapezoidal rule. Only peaks of p~s are included in the numerical integration as small
values of p~s have negligible contribution to the magnitude of BBSAN. This is
accomplished by integrating from the main peak of p~s to typically half the range of
p~s over both negative and positive wavenumbers.

It is important to note that one of the assumptions in the formulation of the adjoint
vector Green’s function solver is that the static pressure everywhere in the jet is equal to
the ambient. This assumption is necessary in order to form a single second order
differential equation for the pressure from the Euler equations. This assumption is valid
for all subsonic jets and on-design supersonic jets. Off-design supersonic jets have a
shock cell structure due to the static pressure at the nozzle exit not matching the ambient
static pressure. The resultant shocks and Prandtl-Meyer expansions cause the static
pressure to be either greater or much smaller than the ambient values. However, the
BBSAN sources exist near the outside of the jet in the shear layer and the pressure
mismatch at these locations is very small. The sources of fine-scale mixing noise exist
in the high speed shear layer, the transition region, and the fully developed region of the
jet and are much more affected by this assumption.

The new prediction model and other associated models in RISN require knowledge
of a mean flow. The mean flows are determined from solutions of the Steady
Reynolds-Averaged Navier-Stokes equations (SRANS). The SRANS solutions are
found using the NPARC Alliance Wind-US solver. Wind-US was developed by the
NPARC Alliance which is a partnership between NASA Glenn Research Center
(GRC), the U. S. Air Force Arnold Engineering Development Center, and additional
contributors. Solutions from Wind-US are found using the default options of the CFD
solver. The SRANS equations are closed by the Menter [24] shear stress transport
(SST) turbulence model.

The fine-scale mixing noise models of Tam and Aurialt [20] and Morris and
Boluriaan [21] have been implemented in the computer program RISN. These
models provide predictions for the fine-scale turbulent mixing noise and are similar
to or based on acoustic analogies. These models are simple to implement due in part
to the modular design of the RISN code and the large number of arguments that are
similar to those of the BBSAN models. Both models consist of spatial integrals that
involve mean flow components, turbulence statistics based on the mean flow, and ga
or πn

g . In the model of Tam and Auriault [20] the Green’s function is based on the
parallel flow assumption and is the same Green’s function of Eqn. 36. The model of
Morris and Boluriaan [21] uses the components of the vector Green’s function of the
linearized Euler equations shown as Eqns. 39 and 40. The vector Green’s function of
the linearized Euler equations is required for the evaluation of the developed
prediction model for BBSAN in Eqn. 35. Thus, it is simple to include these mixing
noise models as additional calculations in the RISN code as two additional
subroutines.
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4. RESULTS
This section presents predictions using the BBSAN and fine-scale mixing noise models.
First, a description of the nozzles is given. The operating conditions for the nozzles are
then shown. The CFD solutions for these nozzles operating over a range of conditions
is discussed. Finally, noise predictions are compared with experimental data.

A number of nozzle geometries and operating conditions have been selected. The
convergent nozzle developed by NASA, shown in Fig. 1, has an exit diameter of 0.0508
meters and is chosen to test a wide range of conditions. A convergent-divergent nozzle,
shown in Fig. 2, designed at the Pennsylvania State University, is also selected. It has a
design Mach number of 1.50 and an exit diameter of 0.0127 meters. This nozzle and
associated experimental data are courtesy of Professor D. K. McLaughlin of the
Pennsylvania State University. Finally, a dualstream nozzle, shown in Fig. 3, with
convergent primary (core) and secondary (fan) streams is selected with primary nozzle
exit diameter of 0.0622 meters, secondary nozzle exit inner diameter of 0.1017 meters,
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Figure 2: The nozzle contour of the singlestream convergent-divergent PSU nozzle.
D = 0.0127 m.



and outer diameter of 0.1525 meters. The dualstream nozzle exits are off-set axially.
The secondary stream exit is 0.0984 meters upstream of the primary nozzle exit. This
dualstream Boeing nozzle is selected to help illustrate the effect of the high speed
secondary stream on the primary stream’s BBSAN sources. This nozzle geometry and
associated experimental data are courtesy of Dr. K. Viswanathan of the Boeing
Company.

The nozzle operating conditions are summarized in Table 1 for single stream jets and
Table 2 for dualstream jets. The first column describes the nozzle used and has an
associated run number as a suffix. For each case there are corresponding nozzle pressure
ratio (NPR) and total temperature ratio (TTR ) values as well as the fully expanded
Mach number Mj . The subscript p denotes the value for the primary flow or core nozzle
and the subscript s denotes the operating condition of the secondary stream or fan flow.
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Figure 3: The nozzle contour of the dual stream nozzle. The core nozzle exit
diameter is, Dp = 0.0622 m, the fan nozzle exit inner diameter is
0.101716 m, and fan nozzle exit outer diameter, Ds = 0.15248 m.

Table 1: Nozzle operating conditions for single stream jets.

Nozzle Md NPR Mj TTR
NASA 1.00 1.893 1.00 1.00
NASA 1.00 2.556 1.24 1.00
NASA 1.00 3.154 1.39 1.00
NASA 1.00 1.893 1.00 2.70
NASA 1.00 2.556 1.24 2.70
NASA 1.00 3.154 1.39 2.70
NASA 1.00 1.893 1.00 3.20
NASA 1.00 2.556 1.24 3.20
NASA 1.00 3.154 1.39 3.20
PSU 1.50 2.770 1.30 1.00
PSU 1.50 4.930 1.70 1.00
PSU 1.50 2.770 1.30 2.20
PSU 1.50 4.930 1.70 2.20



These cases are selected based on available experimental data and represent a wide
range of over- and under-expanded conditions. In addition, a wide range of TTR are
chosen to examine temperature effects on the noise predictions. SRANS solutions are
produced by the Wind-US 2.0 solver for each case shown in Tables 1 and 2. The models
have been exercised on each case. Only select cases are presented in this paper but are
representative of the results for the cases not shown.

A single result is chosen to illustrate the SRANS solutions of each case from Tables
1 and 2. Figure 4 shows the Boeing Company nozzle operating at NPRp = 2.40, 
TTRp = 2.70, Mjp = 1.192, NPRs = 1.80, TTRs = 1.00, and Mjs = 0.959. Contours of
Mach number are shown. Both the core and fan nozzles are convergent, thus either stream
can operate on-design, under-expanded, or subsonically. The shock cell structure can
faintly be seen in the core stream and is contained by the high speed subsonic fan flow.

Before showing the jet noise predictions the format of their presentation is
discussed. The predictions of the two BBSAN models and the two mixing noise
models are shown in Figs. 5 through 8. Each figure shows a comparison of jet noise
predictions with corresponding experimental data for a particular nozzle and the
corresponding operating condition summarized in Tables 1 and 2. The formats of each
figure are similar. For example, in Fig. 5 there are six sets of spectra shown and each
one represents a different observer position. Observer positions are at one hundred
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Table 2: Nozzle operating conditions for dual stream jets.

Nozzle Mdp,ds NPRp Mjp TTRp NPRs Mjs TTRs

Boeing 1.00 1.400 0.710 2.14 2.140 1.358 1.00
Boeing 1.00 2.700 1.281 2.87 2.870 0.848 1.00
Boeing 1.00 2.556 1.281 2.87 2.870 1.358 1.00
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Figure 4: Mach number contour plot of the dualstream nozzle. The primary flow is
under-expanded and supersonic operating at Mj = 1.192 and TTR =
2.70 and the secondary flow is operating at Mj = 0.959 and TTR = 1.00.



nozzle diameters from the primary nozzle exit at inlet angles, Ψ, shown in the upper
left hand corner. The downstream direction is represented by values of Ψ greater than
ninety degrees. The frequency is non-dimensional in the form of the Strouhal number,
St, using the fully expanded jet velocity uj and the fully expanded diameter Dj. Dj is
a nozzle exit diameter that provides an on-design flow based on a given throat
diameter and NPR. Each set of experimental data is shown by a thin black line, the
fine-scale mixing noise predictions of Tam and Auriault [20] are a long dash dot line,
the fine-scale mixing noise predictions of Morris and Boluriaan [21] are a double dot
dash line, the BBSAN predictions using Eqn. 51 (see Appendix A) are a dotted line
and labeled as Morris and Miller 2010 (MM 2010), and the new BBSAN model
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Figure 5: The noise spectra from the NASA nozzle, Md = 1.00, D = 0.0508 m,
with operating conditions Mj = 1.39 and TTR = 1.00, at a distance of 
R/D = 100 and observer angles Ψ.



predictions Eqn. 35 are shown as thick black lines with white circles (labeled
Prediction). Predictions of the noise produced by the large-scale coherent turbulence
are not included in this study. The noise from the large-scale turbulent structures
dominate the spectra in the downstream direction. In this direction it is expected that
the predictions of BBSAN and fine-scale mixing noise will be much lower than the
total SPL measured by experiment.

Fig. 5 shows results for the convergent NASA nozzle operating with a fully
expanded Mach number of Mj = 1.39 and TTR = 1.00. At the sideline location in
Fig. 5 the differences between the two BBSAN models are relatively small. This is
due to the negligible effects that the shear layer has on the BBSAN propagating in
the sideline direction. By examining the differences between the predictions of the
two BBSAN models at various angles other than the sideline location, the effects of
the mean flow on the BBSAN can be observed. In the upstream direction, the half-
width of the main BBSAN peak is narrower and generally has a higher rate of decay
at lower St when mean flow effects are included. However, this is a relatively small
effect in the single jet case. This can be observed best at angles ψ = 50 and ψ = 70
degrees. In the downstream direction the opposite is true and the BBSAN decays at
a lower rate away from the peak frequency when mean flow effects are included. At
the sideline location the fine-scale mixing effects generally scale well with the
experimental data. At the highest Mj the fine-scale predictions agree much better
compared with the sonic case. Generally both fine-scale mixing noise predictions
over-estimate the fine-scale mixing noise in the sideline and upstream directions. In
the downstream direction the large-scale mixing noise dominates the fine-scale
mixing noise. There is little variation in the fine scale mixing noise peak level
predictions with observer angle. However, the measured mixing noise levels have
increased considerably from ψ = 130 degrees to 150 degrees, indicating the
dominance of the large-scale mixing noise at these downstream angles.

A second case is examined using the NASA nozzle shown in Fig. 6. The nozzle
operates with Mj = 1.24 and TTR = 3.20. Relative to the previous single stream case
there is substantial heating. This heating removes the strong screech tones present in
the cold case. At the sideline location the effects of the meanflow on the shock noise
predictions are minimal. The two predictions of BBSAN are almost identical. In the
upstream direction predictions of BBSAN are also very similar. Differences are again
apparent in the downstream direction, especially in the peak noise direction. It is
difficult to know which predictions are more accurate in the peak noise direction
because of the dominance of the large-scale mixing noise. At ψ = 110 degrees a small
increase in the experimental result is observed at St = 1.5. This small increase is due to
the BBSAN. Interestingly, the new prediction model finds this small increase over the
mixing noise while the BBSAN prediction of Morris and Miller [4] under predict this
contribution. The mixing noise predictions, like the predictions of BBSAN, have the
same general spectral shape in the sideline and upstream directions. Only in the
downstream directions do they differ significantly from the measurements, as expected.

The Penn State convergent-divergent nozzle has a design Mach number of 1.50 and
exit diameter of 0.0127 m. The predictions at ψ = 50 degrees are not shown because
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experimental data is not available at this location. This final single stream case is shown
in Fig. 7 for Mj = 1.7 and TTR = 1.0. In the upstream direction the BBSAN peak is
narrower. In the downstream direction, the BBSAN predictions with mean flow effects
are highly damped. This is best illustrated at an observer angle of ψ = 150 degrees.
Screech tones typically lower the peak BBSAN frequency and raise its amplitude at the
sideline location, which is generally free from mean flow propagation effects. The fine-
scale turbulent mixing noise in the unheated and heated cases under-predict the
experiment. In the unheated case the Tam and Auriault [20] model has better agreement
with the experiment than that of Morris and Boluriaan [21].

The predictions and experimental spectra of one of the dualstream jet cases are now
examined. Both the core and fan nozzles are convergent as shown in Fig. 3. The Boeing
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Figure 6: The noise spectra from the NASA nozzle, Md = 1.00, D = 0.0508 m,
with operating conditions Mj = 1.24 and TTR = 3.20, at a distance of 
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dualstream nozzle operates at Mjp = 1.281, Mjs = 1.358, TTRp = 2.870, and TTRs =
1.00 and the noise spectra are shown in Fig. 8. At the sideline location the predictions
of Eqn. 35 and Eqn. 51 show slightly better agreement relative to the experimental
magnitude and a much richer spectral content. Multiple BBSAN peaks can be seen at
the higher BBSAN harmonics. In the downstream direction similar results are seen
compared to previous BBSAN predictions relative to experimental data. The data in the
upstream direction, particularly at ψ = 50 degrees, represents an important result of the
present paper. The BBSAN predictions of Eqn. 35 show much improved agreement with
experiment compared to the prediction of Eqn. 51. The predicted spectrum that includes
the vector Green’s function has much richer spectral content, a more accurate fall-off at
low and high frequencies, and better amplitude agreement until St = 2.
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Figure 7: The noise spectra from the PSU nozzle, Md = 1.50, D = 0.0127 m, with
operating conditions Mj = 1.70 and TTR = 1.00, at a distance of R/D =
100 and observer angles Ψ. The experimental data is courtesy of Professor
D. K. McLaughlin of the Pennsylvania State University.



5. CONCLUSION
An acoustic analogy based on the Euler equations has been formed for BBSAN. The
parameter values for the model are provided by a steady mean flow solution of the RANS
equations and the vector Green’s function of the linearized Euler equations using an
adjoint approach. This acoustic analogy reduces to the model developed by Morris and
Miller [4] if the vector Green’s function of the linearized Euler equations for a quiescent
environment is used. Comparison of these two models shows that at the sideline location
the spectral shape is the same. Thus, as expected, the mean flow effects are minimal if
the observer is at the sideline location of the jet. In the downstream region, the mean flow
effects on BBSAN generally decrease the noise levels. In the upstream direction the mean
flow effects have more significance and the new BBSAN model shows better agreement
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Figure 8: The noise spectra from the Boeing nozzle, Mdp = 1.00 Dp = 0.06223 m,
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distance of R/D = 100 and observer angles Ψ. The experimental data is
courtesy of Dr. K. Viswanathan of the Boeing Company.



with experimental data than predictions that neglect mean flow effects. The newly
developed model predictions show an increased number of broadband peaks, slightly
better agreement in amplitude relative to experimental results, faster decay at lower
frequencies and slower decay at higher frequencies relative to the peak frequency. These
mean flow effects, although slight, generally yield more accurate predictions relative to
the model of Morris and Miller [4]. In particular, the BBSAN calculations for the
dualstream jets in the upstream direction show the most improvement.

The modular nature of RISN and the locally parallel adjoint vector Green’s solver for
the linearized Euler equations allowed implementation of the fine-scale mixing noise
models of Tam and Auriault [20] and Morris and Boluriaan [21] with ease. In general the
fine-scale turbulent mixing noise models capture the peak frequencies, peak amplitudes,
and fall-off at high frequencies. At lower frequencies the models generally had too slow a
spectral fall-off relative to experimental data. This could easily be corrected with changes
described in the appendix of Morris and Boluriaan [21]. In the downstream direction the
fine-scale mixing noise is dominated by the large-scale mixing noise. Thus, the fine-scale
mixing noise models have little contribution to the total noise in the downstream direction.

The developed acoustic analogies for BBSAN and fine-scale mixing noise make use
of a vector Green’s function. The arguments of these models could easily be found by a
numerical adjoint vector Green’s function solver that makes no assumption about the
flow-field or the geometry. In fact, use of a tailored vector Green’s function could
include the effects of reflections from the airframe and refraction due to the jet shear
layer, without further modification to the acoustic analogies.
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APPENDIX A
It is shown here that Eqn. 35 reduces to the model equation of Morris and Miller [4].
The mean flow effects are neglected by using the Green’s function of the Helmholtz
equation. This can be performed by setting the mean flow conditions to their ambient
values in Eqns. 10 and 11, taking the Fourier transform with respect to time, and finding
the Green’s function. This yields,

(47) 

where z– is a vector to the source locations. Note that the sign of the exponent gives
outgoing waves for the time variation implied by Eqn. 14. The vector Green’s function of
the linearized Euler equations for a quiescent environment based on Eqns. 10 and 11 is,

Substituting Eqn. 47 into Eqn. 48, assuming that the observer is in the far-field, and
simplifying the previous equation yields an expression for the vector Green’s function
in the absence of varying mean flow (which is very similar to the Green’s function of
the Helmholtz equation),
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Substituting Eqn. 49 into Eqn. 35 yields, 

This expression for the spectral density provides no account for the mean flow
effects but retains the ability to specify anisotropic turbulence. Morris and Miller [4]
used the Proudman [25] form for isotropic turbulence, anmxnxm/x2 = 2/3. Using this
assumption and simplifying yields,

which is the model equation developed in Morris and Miller [4]. There are three minor
differences. The first arises as a more consistent notation has been used in the present
paper for the spatial and temporal Fourier transforms and their inverses. This changes
the sign of k1. However, since p~s(k1, y2, y3) is an even function of k1 this does not change
the result. The second minor difference is a factor of 2/3 that comes from the definition
of anm. Eqn. 51 is applicable to three-dimensional flow-fields, but has the
simplifications of isotropic turbulence and no effects of BBSAN propagation induced
by variations of the shear layer mean flow. Finally, an incorrect factor of exp (ik1y1) has
been removed.
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