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An acoustic analogy is developed based on the Euler equations for broadband shock-
associated noise (BBSAN) that directly incorporates the vector Green’s function of the lin-
earized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS)
as the mean flow. The vector Green’s function allows the BBSAN propagation through
the jet shear layer to be determined. The large-scale coherent turbulence is modeled by
two-point second order velocity cross-correlations. Turbulent length and time scales are
related to the turbulent kinetic energy and dissipation. An adjoint vector Green’s function
solver is implemented to determine the vector Green’s function based on a locally parallel
mean flow at streamwise locations of the SRANS solution. However, the developed acous-
tic analogy could easily be based on any adjoint vector Green’s function solver, such as
one that makes no assumptions about the mean flow. The newly developed acoustic anal-
ogy can be simplified to one that uses the Green’s function associated with the Helmholtz
equation, which is consistent with the formulation of Morris and Miller (AIAAJ 2010). A
large number of predictions are generated using three different nozzles over a wide range
of fully expanded Mach numbers and jet stagnation temperatures. These predictions are
compared with experimental data from multiple jet noise labs. In addition, two models
for the so-called ‘fine-scale’ mixing noise are included in the comparisons. Improved BB-
SAN predictions are obtained relative to other models that do not include the propagation
effects, especially in the upstream direction of the jet.

Nomenclature

am Factor to match inner- and outer-solution magnitudes
anm Amplitudes of components of second-order cross-correlations
c Speed of sound
D Nozzle exit diameter
fvi Unsteady force per unit volume associated with velocity fluctuations
fai Unsteady force per unit volume associated with speed of sound fluctuations
g Green’s function of Lilley’s equation
H

(j)
i Hankel functions of kind j and order i

Ji Bessel function of the first kind and order i
K Turbulent kinetic energy
ki Spatial wavenumber vector component in the i direction
l Integral length scale in the streamwise direction
l⊥ Integral length scale in the cross-stream direction
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M Mach number
Md Design Mach number
Mj Fully expanded Mach number
m Azimuthal mode number
NPR Nozzle pressure ratio
p Pressure
ps Shock pressure perturbation
p̃s Fourier transform of the shock pressure perturbation in the streamwise direction
R Distance from source point to observer
Ro Radial location between the inner and outer solutions of the Green’s function solver
Rnm Two-point cross-correlation of the turbulent velocity fluctuations
Rvnm Two-point cross-correlation of fvn
r Radial direction
S Spectral density
Snm Wavenumber frequency spectrum of the turbulent velocity correlation
TTR Total temperature ratio
t Time
u Streamwise velocity
v Radial velocity
vngi Component of the vector Green’s function of the linearized Euler equations
x Streamwise direction
x = x(x, y, z) Vector observer position
y = y(x, y, z) Vector source position from the primary nozzle exit
β Off-design parameter
γ Ratio of specific heats
δ Dirac delta function
ε Dissipation rate of turbulent kinetic energy
η = η(ξ, η, σ) Vector between two source locations
θ Dilatation rate or observer angle from nozzle downstream axis
λ Parameter equal to ω sin θ/c∞
π Logarithm of the pressure
πng Vector Green’s function of the linearized Euler equations
ρ Density
τ Retarded time
τs Turbulent integral time scale
φ Azimuthal angle
Ψ Observer angle from the nozzle inlet axis
Ω Specific dissipation rate of turbulent kinetic energy
ω Radian frequency

Subscript
j Jet fully expanded quantity
p Property of the primary jet
s Property of the secondary jet, shocks, or turbulence scale
∞ Ambient value

Introduction

Broadband shock-associated noise (BBSAN) is present in supersonic jets when the jet is operating off-
design. This occurs due to the static pressure at the nozzle exit not being equal to the pressure outside
the nozzle. Nozzles that operate at the nominal on-design pressure ratio can also create a periodic shock
cell structure in the jet plume if the characteristic waves are not canceled by the nozzle walls or the flow
separates inside the nozzle. BBSAN occurs in nozzles that are convergent or convergent-divergent and when
the flow is over- or under-expanded. The interaction between the large-scale coherent turbulence in the jet
shear layer and shock cells is the source of shock-associated noise. BBSAN is observed in the far-field as a
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broad spectral peak and dominates the jet mixing noise levels at large angles to the jet downstream axis.
The peak frequency is a function of the jet shock cell spacing, the convection velocity of the jet shear layer
turbulence, and observer location. The amplitude of BBSAN depends on the ratio of observer distance to
the jet diameter, the polar and azimuthal observer angles, the geometry of the nozzle, the degree of off-
design operation, and to a lesser degree, the stagnation temperature. The degree of off-design operation is
represented by the off-design parameter, which is defined by β = |M2

j −M2
d |1/2. Mj is the fully-expanded

jet Mach number, which depends on the nozzle pressure ratio and the ratio of specific heats, and Md is the
nozzle design Mach number, which depends on the nozzle throat to exit area ratio.

Harper-Bourne and Fisher2 developed the first prediction method for BBSAN. Their proposition was that
BBSAN depends on the nearly coherent interaction between the turbulence in the jet shear layer and the jets
nearly periodic shock cell structure. This can be modeled as a series of correlated point sources that radiate
either constructively or destructively. Harper-Bourne and Fisher’s prediction scheme depends on knowledge
of the rate of decay of the turbulence correlation between shocks, as well as the characteristic spectral shape
of the radiated noise generated by each interaction. These were obtained using a least squares procedure to
match the model with experimental noise measurements. The method is used in the SAE ARP8763 prediction
method for single stream shock-associated noise from convergent nozzles at supercritical conditions and is
included as a prediction module in NASA’s Aircraft Noise Prediction Program (ANOPP).4

Tam5 developed a method for BBSAN prediction and the basic physical model is described by Tam and
Tanna.6 Tam argued that the shock cell structure in the jet could be modeled, following the work of Pack,7

as a waveguide, where the waves are forced by the pressure imbalance at the jet exit and are confined by
the jet shear layer. The simplest model that can be used for the jet is a vortex sheet. The effects of the
slow divergence of the jet and the dissipative effects of the turbulence on the shock cells can also be included
in the same general framework as shown by Tam et al.8 The large-scale turbulence in the jet shear layer
is modeled as a random superposition of instability waves supported by the jet mean flow, as described by
Tam and Chen.9 The interaction between the downstream traveling instability waves and the nearly periodic
shock cell structure results in an interference pattern of traveling waves. The phase velocity of these waves
can be higher than that of the instability waves alone and gives rise to noise radiation at large angles to
the jet downstream axis, including the upstream direction. Since there is a random set of instability waves
interacting with the shock cells, the resulting radiation pattern involves broad lobes rather than a sharply
directional radiation. Empirical formulas are used to represent the shock cell spacing, the convection velocity
of the turbulence, and the spectral width of the measured noise data. The predictions give good agreement
with noise measurements in both the jet’s near- and far-fields and certain key features of the measured
spectra are captured. These include the variation of the frequency of the broadband spectral peak with
observer location (the same prediction is provided by the Harper-Bourne and Fisher2 model), the narrowing
of the width of the noise spectrum as the observer moves towards the jet upstream direction, the presence
of multiple lobes in the near-field noise contours, and the presence of secondary spectral peaks at higher
frequencies than the main peak. It should be noted that the Harper-Bourne and Fisher2 model predicted
multiple harmonics of the shock peak with the same amplitude, which is not observed in the experiments.
This can be overcome if the shock cell spacing is taken to be non-uniform. More recent versions of ANOPP
have incorporated Tam’s BBSAN model.

Tam10 modified the model by Tam5 to include the capability to predict BBSAN from heated jets up to
a moderate off-design parameter. This was accomplished by better approximating the shock cell spacing.
Also, a temperature correction factor, Tcf , was included to correct the over-prediction at all frequencies due
to increasing total temperature ratio (TTR). Another important modification was the use of different scaling
factors that were dependent on whether the jet was over- or under-expanded.

Morris and Miller11 developed a prediction method for BBSAN that uses a RANS CFD solution for the
properties of the flow-field. The instantaneous properties were decomposed into the mean field quantities, a
shock perturbation, a turbulence perturbation, and a perturbation due to the interaction of the turbulence
and shocks, which is the BBSAN. The resulting equations were rearranged to form the operator of the
linearized Euler equations for the BBSAN fluctuations on the left hand side with resultant equivalent source
terms placed on the right hand side. This forms an acoustic analogy for the BBSAN. The solution for the
far-field pressure can be written immediately in terms of the source terms and the vector Green’s function
of the linearized Euler equations. The vector Green’s function was written in terms of the solution of the
Green’s function for the Helmholtz equation. This approximation was made because the BBSAN sources
are located in the shear layer of the jet and radiate predominantly in the sideline and upstream directions.
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Sources are modeled based on dimensional grounds and scale as the shock pressure and turbulent velocity
fluctuations, and an integral length scale of turbulence in the jet shear layer. The cross-correlation of the jet
turbulence is modeled in a separable form as first suggested by Ribner12 and scales with the turbulent kinetic
energy. The final closed form model equation is a volume integral over the jet plume and a single integral
of the shock cell pressure wavenumber spectrum. All the quantities in the closed form model equation can
easily be found based on a steady Reynolds-Averaged Navier-Stokes (SRANS) solution. Simple models relate
the SRANS solution to the turbulence quantities.

Dual stream jet SRANS calculations have recently been performed by Abdelhamid and Ganz13 to in-
vestigate the characteristics of the shock-containing plumes. They showed that the shock cell spacing and
strength were predicted correctly over a wide range of operating conditions. SRANS calculations can capture
realistic mean flow values for BBSAN prediction. In dualstream jets, there are essentially two sets of BB-
SAN sources. One that occurs in the outer shear layer that divides the fan stream and the ambient air and
another that occurs in the inner shear layer that divides the core and fan streams. Tam et al.14 confirmed
this by predicting the peak frequencies from dualstream jets where the core stream is subsonic and the fan
stream is supersonic and operating off-design. This was achieved by accurately predicting the peak BBSAN
frequencies for both sets of shock wave shear layer interactions over a wide range of observer angles.

Tam and Reddy15 developed a rectangular jet BBSAN prediction model for aspect ratios less than six
and with convergent-divergent geometry. One of the side-walls of the rectangular nozzle has no variation.
The model is a modification of the work performed by Tam.5 The model is linked to a rectangular nozzle
with one straight wall, thus the nozzle always supports a shock cell structure. Further modifications to this
model have been made to include the effects of forward flight.

The model of Morris and Miller11 was applied to dualstream and rectangular jets by Miller and Morris.16

This work demonstrated the first BBSAN predictions of dualstream jets using an acoustic analogy. However,
the approximation that the mean flow has negligible effect on the noise is not appropriate for dualstream jets
if the dominant shock noise is from the primary stream. This is due to the refraction effects of the secondary
stream shear layer. Miller and Morris16 also demonstrated the first rectangular nozzle BBSAN predictions
based on SRANS solutions. The developed model equation makes no assumption regarding the geometry of
the nozzle and is not limited to rectangular or circular geometries.

Many empirical models have been developed for jet mixing noise. There are a limited number of empirical
models developed for BBSAN. Unlike the models discussed thus far, these are based on noise measurements
in the far-field and typically predict only spectra in one-third octave bands. One such example is the
ANOPP module of Stone4 designed for singlestream or high bypass dualstream axisymmetric nozzles. It
follows a traditional empirical noise modeling strategy of forming the mean square pressure as a product of
the acoustic power, directivity, and a spectrum function. This model has been validated extensively against
a large experimental database. Another notable empirical model is by Deneuville17 that essentially consists
of a peak frequency and magnitude at a point and calculates the rise and fall of BBSAN as straight lines.

Kuo et al.18 performed experimental studies on various jets operating off-design and at various total
temperature ratios. The effects of these variations in temperature were compared to the far-field spectra in
an attempt to find scaling laws of BBSAN. A simple empirical model was constructed that fits the spectral
shapes across a large range of operating conditions. Like the model of Tam,5 the BBSAN spectra are chosen
to consist of Gaussian peaks. Recently Viswanathan et al.19 measured the saturation of BBSAN with
stagnation temperature and separated out the fine-scale mixing noise.

Recently Dahl20 has compared many BBSAN model predictions to experiment. These include some of
the models discussed in this paper and also includes a brief comparison of the SRANS based model of Morris
and Miller1 with those of Tam.10 Dahl showed that for cold cylindrical jets operating supersonically and
off-design the models of Tam,10 Morris and Miller,11 Stone,4 and Deneuville17 all had good agreement for the
peak frequency, peak levels, and directivity angles. When the cylindrical jet is heated the BBSAN models
of Tam5 and Morris and Miller1 correctly predict the magnitude and frequencies in the upstream direction
but none of the models accurately predict the magnitude in the downstream direction. However, this is less
of a concern due to mixing noise typically being dominant in the downstream quadrant of jet.

In this paper an acoustic analogy is developed that is based on the Euler equations for the prediction
of BBSAN. The propagation is addressed by requiring knowledge of the vector Green’s functions to the
linearized Euler equations as a component of the solution to the acoustic analogy equations. Any adjoint
vector Green’s function solver for the linearized Euler equations could be used in the solution. In this work
the vector Green’s function is found numerically by using a locally parallel flow assumption that is similar
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to the approach of Tam and Auriault,21 Raizada,22 and Khavaran et al.23 Predictions using the newly
developed BBSAN model are compared with the previously developed model and experimental data from
the National Aeronautics and Space Administration (NASA), the Pennsylvania State University (PSU), and
the Boeing Company.

In addition to the prediction of BBSAN, the prediction of so-called ‘fine-scale’ mixing noise is performed
using the models of Tam and Auriault24 and Morris and Boluriaan.25 The fine-scale mixing noise component
radiates in all directions from the jet and is overshadowed by the noise from large-scale structures in the
downstream direction and partially by the BBSAN in the sideline directions. It occurs at all jet Mach
numbers. These fine-scale mixing noise models are simple to implement in the developed computer code
RANS Integration for Shock Noise (RISN) due to its modular nature and the similar arguments used in
BBSAN models. The fine-scale mixing noise models use the same form of the vector Green’s function that
are used in the newly developed BBSAN model. The fine-scale mixing noise models are exercised using
the same nozzles and operating conditions as the BBSAN models. The combination of fine-scale mixing
and BBSAN predictions yields a prediction of the total noise created by off-design supersonic heated jets.
However, it should be noted that no model is included for the large-scale mixing noise in the peak noise
radiated direction.

The next section describes the development of the new prediction model in detail. Next, details regarding
the implementation of the BBSAN model in RISN are given. The determination of various arguments of the
mathematical models and the evaluation of the models themselves are then described. Extensive predictions
are performed using the developed models using the RISN code and comparisons are made with experimental
data. A wide range of design Mach numbers and operating conditions are selected to compare the predictions
with experiment. Finally, conclusions are drawn based on the developed BBSAN models and predictions.

Mathematical Model

Mean flow effects in the previously developed BBSAN model of Morris and Miller1 have been neglected,
and an approximation of the vector Green’s function of the linearized Euler equations was used. This involved
using the Green’s function of the Helmholtz equation and writing it in terms of the vector Green’s function
for the linearized Euler equations. A similar modeling strategy has been followed here except it is assumed
that the vector Green’s function to the actual linearized Euler equations is known explicitly. This model
is similar in form to the one previously developed because it consists of a single wavenumber integral in
the axial direction of the shock pressure spectrum and a volume integral over the BBSAN sources. It can
be shown that this model, when the previous form of the vector Green’s functions are inserted, reduces to
the model originally developed by Morris and Miller.11 The newly formed prediction method has the same
advantages as the previous model, but can accurately take into account the mean flow effects that are present
due to high speed shear layers and freestream Mach numbers.

A vector Green’s function solver for the linearized Euler equations is required to complete the newly
developed prediction model. Tam and Auriault24 and Karabasov et al.26 have developed a three-dimensional
adjoint solver for the linearized Euler equations with a general mean flow. However, here a simpler approach
is adopted temporarily by the authors that is based on a locally parallel flow approximation. Since the
spreading rate of the jet is small, this approach is a reasonable first approximation. At each streamwise
location of the jet, field variables are extracted to calculate the Green’s function of Lilley’s equation. This
is performed by solving a single differential equation numerically. Only for very special mean flows can the
equation be solved analytically. The resultant Green’s function of Lilley’s equation is used to calculate the
vector Green’s function of the linearized Euler equations. This step is performed at each streamwise location
for each observer angle and frequency. The methodology of this approach is based on Tam and Auriault,21

Raizada,22 and Karabasov et al.26

The governing equations chosen to form the acoustic analogy are the Euler equations. This is similar
to the approach developed by Tam.5 Tam’s analysis is considerably simplified if the following form of the
inviscid compressible equations of motion are used,

Dπ

Dt
+
∂vi
∂xi

= 0 (1)

Dvi
Dt

+ c2
∂π

∂xi
= 0 (2)
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where D is the material derivative, c is the local speed of sound, t is time, and vi are the velocity components
in the xi directions of a Cartesian coordinate system. π is related to the logarithm of the pressure,

π =
1
γ

ln (p/p∞) (3)

where p is the pressure, p∞ is the ambient pressure, and γ is the ratio of specific heats of an ideal gas.
Following Tam,5 the instantaneous flow-field properties are separated into four components. That is,[

π

vi

]
=

[
π̄ + πs + πt + π′

v̄i + vsi + vti + v′i

]
(4)

where the overbar denotes the long time averaged value, the subscript s denotes the perturbations associated
with the shock cell structure, the subscript t denotes the fluctuations associated with the turbulence, and the
primes denote the fluctuations generated by the interaction of the turbulence and the shock cell structure.
It will be assumed that the shock cell structure satisfies the steady linearized version of Eqns. 1 and 2.
In addition, it is assumed that the unsteady linearized version of these equations is also satisfied by the
turbulent velocity fluctuations. This is justified if the important components of the turbulence, so far as
the broadband shock-associated noise is concerned, are coherent over relatively large axial distances. These
components are described well by a linear instability wave model.

Making these assumptions, the inhomogeneous equations for the fluctuations associated with the inter-
action of the turbulence with the shock cells can be written,

∂π′

∂t
+ v̄j

∂π′

∂xj
+
∂v′i
∂xi

= θ (5)

∂v′i
∂t

+ v̄j
∂v′i
∂xj

+ v′j
∂v̄i
∂xj

+ c̄2
∂π′

∂xi
= fvi + fai (6)

The terms on the left hand side of Eqns. 5 and 6 are the linearized Euler equations in terms of the perturbation
quantities π′ and v′i. The terms that appear on the right hand sides represent the equivalent sources of the
BBSAN. They are defined by,

θ = −vsj
∂πt
∂xj
− vtj

∂πs
∂xj

(7)

fvi = −vsj
∂vti
∂xj
− vtj

∂vsi
∂xj

(8)

fai = −c2s
∂πt
∂xi
− c2t

∂πs
∂xi

(9)

where θ is a dilatation rate generated by the interaction between the pressure gradients and the turbulent
velocity perturbations and the shock cells. fvi is the unsteady force per unit volume associated with in-
teractions between the turbulent velocity fluctuations and the velocity perturbations associated with the
shock cells. Finally, fai is the unsteady force per unit volume related to the interaction of fluctuations in
the sound speed (or temperature), caused by the turbulence and the shock cells, and the associated pressure
gradients. In traditional approaches to turbulence mixing noise models these equivalent sources have been
treated separately and, for the moment, the same assumption will be made here. The solution to Eqns. 5
and 6, can be written in terms of the vector Green’s function that satisfies the equations,

∂πng
∂t

+ v̄j
∂πng
∂xj

+
∂vngi
∂xi

= δ
(
x− y

)
δ (t− τ) δ0n (10)

∂vngi
∂t

+ v̄j
∂vngi
∂xj

+ vngj
∂v̄i
∂xj

+ c̄2
∂πng
∂xi

= δ
(
x− y

)
δ (t− τ) δin (11)

where πng = πng
(
x, y, t− τ

)
and vngi = vngi

(
x, y, t− τ

)
are the components of the vector Green’s function, x

denotes the observer position, y denotes the source location, δ( ) is the Dirac delta function, and τ is the
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source emission time. δij is the Kronecker delta function. For small perturbation pressures, π′ ' p′/γp∞ =
p′/ρ∞c

2
∞. Then the solution for the far-field pressure p′(x, t) can be written,

p′ (x, t) = ρ∞c
2
∞

∫ ∞∫
−∞

∫ ∞∫
−∞

π0
g

(
x, y, t− τ

)
θ
(
y, τ
)

+
3∑

n=1

πng
(
x, y, t− τ

)
[fvn + fan ]

(
y, τ
)
dτdy

(12)

The periodic Green’s function is also introduced, given by,

πng
(
x, y, ω

)
=

1
2π

∞∫
−∞

πng
(
x, y, t− τ

)
exp [−iω (t− τ)] dt (13)

πng
(
x, y, t− τ

)
=

∞∫
−∞

πng
(
x, y, ω

)
exp [iω (t− τ)] dω (14)

From this point, only the source term associated with the velocity perturbations will be considered. It
is expected that the scaling of the other source terms would be similar. The exception would be the source
term associated with the temperature fluctuations. However, the importance of this term still remains the
subject of debate in the prediction of turbulent mixing noise in heated jets. So, for the moment, this term
will not be considered further. Then, the pressure is given by,

p′ (x, t) =
ρ∞c

2
∞

2π

∞∫
−∞

· · ·
∞∫
−∞

3∑
n=1

πng
(
x, y, ω

)
fvn
(
y, τ
)
dωdτdy (15)

Now the autocorrelation of the pressure can be formed. It is given by,

p′ (x, t) p′ (x, t+ τ∗) =
ρ2
∞c

4
∞

(2π)2

∞∫
−∞

· · ·
∞∫
−∞

3∑
n=1

3∑
m=1

πng
(
x, y, ω1

)
πmg (x, z, ω2)

×fvn
(
y, τ1

)
fvm (z, τ2) exp [−iω1 (t− τ1)− iω2 (t− τ2)− iωτ∗] dω1dω2dτ1dτ2dydz

(16)

The spectral density is given by the Fourier transform of the autocorrelation of the pressure,

S (x, ω) =

∞∫
−∞

p′ (x, t) p′ (x, t+ τ∗) exp (iωτ∗) dτ∗ (17)

The integration with respect to τ∗ can be performed immediately.
Before proceeding it is necessary to examine the form of the two-point cross-correlation of fvn . It is

dependent on the strength of the shock cells and the turbulent fluctuations and its product is significant
in regions where the shocks and expansions intersect with the turbulent shear layer. That is, if there is
no turbulence present or pressure perturbation due to shock cells, then the term is small. Furthermore,
the amplitude of fvn is proportional to the shock cell pressure perturbations and the turbulent velocity
fluctuations. If it is assumed that the two-point cross correlation function of the BBSAN source term can
be written in terms of separation distance η and time delay τ , then we can write,

S (x, ω) = ρ2
∞c

4
∞

∫ ∞
−∞

...

∫ ∞
−∞

3∑
n=1

3∑
m=1

πng (x, y,−ω)πmg
(
x, y + η, ω

)
Rvnm

(
y, η, τ

)
exp[iωτ ]dτdηdy (18)

where Rvnm is the two-point cross-correlation of the equivalent source term fvn ,

Rvnm
(
y, η, τ

)
= fvn (y, t) fvm

(
y + η, t+ τ

)
(19)
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and

fvn (y, t) = −vsj
∂vtn
∂xj

− vtj
∂vsn
∂xj

(20)

The SRANS solution does not provide any information about the form of fvn . A model for Rvnm is
constructed as,

Rvnm
(
y, η, τ

)
=

1
ρ2
∞c

2
∞l

2
ps(y)ps(y + η)Rmn(y, η, τ) (21)

where Rnm is the two-point cross correlation function of the turbulent velocity fluctuations in the n and m
directions. Over the distance where the spatial correlation is significant we also continue to assume that,

πmg (x, y + η,−ω) = πmg (x, y, ω) exp
[
−i ω
c∞

x

x
· η
]

(22)

as argued by Tam and Auriault.21 From the definition of πmg ,

πm∗g (x, y, ω) = πmg (x, y,−ω) (23)

where the superscript ∗ represents the complex conjugate. Now,

S (x, ω) = c2∞

∫ ∞
−∞

...

∫ ∞
−∞

3∑
n=1

3∑
m=1

πn∗g (x, y, ω)πmg (x, y, ω)
ps(y)ps(y + η)

l2

×Rnm
(
y, η, τ

)
exp[iωτ − i ω

c∞

x

x
· η]dτdηdy

(24)

One of the shock cell pressure distributions can be represented in terms of its axial wavenumber spectrum,

p̃s(k1, y2, y3) =
∫ ∞
−∞

ps(y) exp[−ik1y1]dy1 (25)

and the corresponding inverse Fourier transform is,

ps(y) =
1

2π

∫ ∞
−∞

p̃s(k1, y2, y3) exp[ik1y1]dk1 (26)

Then,

S (x, ω) =
c2∞
2π

∫ ∞
−∞

...

∫ ∞
−∞

3∑
n=1

3∑
m=1

πn∗g (x, y, ω)πmg (x, y, ω)
ps(y)p̃s(k1, y2 + η, y3 + ζ)

l2

×Rnm
(
y, η, τ

)
exp[−ik1(y1 + ξ)] exp

[
−i ω
c∞

x

x
· η + iωτ

]
dk1dτdηdy

(27)

Now, we introduce the wavenumber frequency spectrum of the turbulent velocity correlation. That is,

Snm(y, k∗, ω∗) =
∫ ∞
−∞

...

∫ ∞
−∞

Rmn(y, η, τ) exp[i(ω∗τ − k∗ · η)]dηdτ (28)

and

Rnm(y, η, τ) =
1

16π4

∫ ∞
−∞

...

∫ ∞
−∞

Snm(y, k∗, ω∗) exp[−i(ω∗τ − k∗ · η)]dω∗dk∗ (29)

Then,

S (x, ω) =
c2∞

32π5

∫ ∞
−∞

...

∫ ∞
−∞

3∑
n=1

3∑
m=1

πn∗g (x, y, ω)πmg (x, y, ω)

×ps(y)p̃s(k1, y2 + η, y3 + ζ)
l2

exp [−ik1(y1 + ξ)]Snm (y, k∗, ω∗)

× exp
[
−iω∗ + ik∗ · η + iω − i ωx

c∞x
· η
]
dω∗dk∗dk1dηdy

(30)
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In Morris and Miller1 it was assumed that the shock cell structure was independent of the cross-stream
distance over the distance where Rnm remained significant. From an examination of the wavenumber spec-
trum as a function of r, this appears to be a reasonable assumption. Obviously, in the azimuthal direction
for axisymmetric jets this also is true. So, we can replace p̃s(k1, y2 + η, y3 + ζ) by p̃s(k1, y2, y3) as before.
Then,

S (x, ω) =
c2∞

16π4

∫ ∞
−∞

...

∫ ∞
−∞

3∑
n=1

3∑
m=1

πn∗g (x, y, ω)πmg (x, y, ω) exp[−ik1(y1 + ξ)]

×ps(y)p̃s(k1, y2, y3)
l2

Snm (y, k∗, ω) exp[i(k∗ − ωx

c∞x
) · η]dk∗dk1dηdy

(31)

Use of the integration identity,∫ ∞
−∞

exp[−i(ω∗ − ω)τ ]dτ = 2πδ (ω∗ − ω) (32)

permits the integration with respect to τ and ω∗ to be performed. Thus,

S (x, ω) =
c2∞
2π

∫ ∞
−∞

...

∫ ∞
−∞

3∑
n=1

3∑
m=1

πn∗g (x, y, ω)πmg (x, y, ω) exp[−ik1y1]

×ps(y)p̃s(k1, y2, y3)
l2

Snm

(
y,
ωx1

c∞x
+ k1,

ωx2

c∞x
,
ωx3

c∞x

)
dk1dy

(33)

Now, consider the form of the two-point cross-correlation of the velocity fluctuations. For simplicity it
will be assumed that they all have the same shape, but the amplitude will vary depending on the component.
This is consistent with the approach used by Karabasov et al.27 for the fourth-order cross-correlations. It
can be expressed as,

Rnm(y, η, τ) = anmKR(η, τ) (34)

where K is the turbulent kinetic energy and anm reflects the relative amplitudes of the different components
of the second-order cross-correlation. The form chosen for R(η, τ) is the same as used before by Morris and
Miller.1 That is,

R(η, τ) = exp[−|τ |/τs] exp[−(ξ − ωτ)2/l2] exp[−(η2 + ζ2)/l2⊥] (35)

where it is assumed that the convection velocity is approximated well by the local mean velocity in regions
of large values of K. From the definition of Snm(y, k, ω) given by Eqn. 28 it can be shown that,

Snm(y, k, ω) = 2π3/2anmKll
2
⊥τs

exp
[
−(k2

1l
2 + (k2

2 + k2
3)l2⊥)/4

]
1 + (ω − k1u)2τ2

s

(36)

Substitution of Eqn. 36 into the form of Snm (y, ωx1/(c∞x) + k1, ωx2/(c∞x), ωx3/(c∞x)) with
x = x(cos θ, sin θ cosφ, sin θ sinφ) yields,

Snm

(
y,
ωx1

c∞x
+ k1,

ωx2

c∞x
,
ωx3

c∞x

)
=

2π3/2anmKll
2
⊥τs

[1 + (1−Mc cos θ − uk1/ω)2ω2τ2
s ]

× exp
[
−l2(k1 + ω cos θ/c∞)2/4− ω2l2⊥ sin2 θ/(4c∞)

] (37)

Substitution of Eqn. 37 into Eqn. 33 and simplification yields,

S(x, ω) = π1/2c2∞

∫ ∞
−∞

...

∫ ∞
−∞

3∑
n=1

3∑
m=1

πn∗g (x, y, ω)πmg (x, y, ω) ps(y)p̃s(k1, y2, y3) exp[ik1y1]

×anmKl
2
⊥τs

l

exp[−l2(k1 − ω cos θ/c∞)2/4− ω2l2⊥ sin2 θ/(4c2∞)]
1 + (1−Mc cos θ − uk1/ω)2

ω2τ2
s

dk1dy

(38)

Equation 38 represents an acoustic analogy based on the Euler equations that uses the vector Green’s
function of the linearized Euler equations to predict BBSAN. Appendix A shows that this expression reduces
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to the result by Morris and Miller1 when the vector Green’s function based on the Helmholtz equation and
an isotropic source model are used.

Evaluation of Eqn. 38 requires knowledge of the vector Green’s function of the linearized Euler equations.
An adjoint approach is followed here which shortens calculation time greatly. This approach is based on the
work of Tam and Auriault21 and Raizada.22 Assuming a locally parallel mean flow, q = q(y, z), where q
represents the field-variables, the adjoint Green’s function can be written,

ga(x, y, ω) =
exp[−iω(x1 cos θ −R)/c∞]

8π2c2∞Rω

∞∑
m=0

fm(r) cos(mφ) (39)

where m is an azimuthal mode number. Equation 39 is valid inside the jet (r < Ro). There is no concern
about solutions outside the jet as sources of BBSAN do not exist in that region. The quantity fm is found
for each mode m by solving the following differential equation in the region 0 < r < Ro,

∂2fm
∂r2

+

[
−4 cos θ dūdr /c∞
1− ū cos θ/c∞

− 1
ρ̄

dρ̄

dr
+

1
r

]
∂fm
∂r

+

ω2
(

1− u cos θ
c∞

)
γp/ρ

+
3
(

1
ρ
∂ρ
∂r

∂u
∂r −

∂2u
∂r2

)
cos θ
c∞

1− u cos θ/c∞
− m2

r2
− ω2 cos2 θ

c2∞

 fm = 0

(40)

As shown by Tam and Auriault,21 the solution near the centerline (r ' ε) is fm = amr
m. Using this

expression, the boundary conditions at the centerline of the jet are specified and a spatial marching problem
in the radial direction can be formed at each streamwise location. The details of the marching methods used
are discussed in the next section. For each radial mode m, fm needs to be scaled so that the inner-solution
matches the outer-solution of ga at r = Ro. Raizada22 showed that a scaling factor can be used for this
purpose,

am =
(−i)mεmλ

(
Jm(λRo)H

(1)′

m (λRo)− J ′m(λRo)H
(1)
m

)
fm(Ro)H

(1)
m (λRo)f ′m(Ro)−H(1)

m (λRo)λfm(Ro)
(41)

where εm is unity for m = 1 and is two for all other values of m, λ = ω sin θ/c∞, and the primes denote a
derivative of the Hankel function or fm with respect to their arguments. The vector Green’s function of the
linearized Euler equations is related to the Green’s function of Lilley’s equation by,

π0
g = ω2g − 2iuω

∂g

∂yx
− u∂

2g

∂y2
x

(42)

π1
g(x, y, ω) = −

(
iω + u

∂

∂yx

)
∂

∂yx
g(x, y, ω) (43)

π2
g(x, y, ω) = −

{
3
∂u

∂yr

∂

∂yx
+ (iω + u

∂

∂yx
)
∂

∂yr

}
g(x, y, ω) (44)

π3
g(x, y, ω) = −

(
iω + u

∂

∂yx

)
1
yr

∂

yθ
g(x, y, ω) (45)

where y = (yr, yθ, yx) denotes the source position in cylindrical polar coordinates. The reciprocal relation
of g = ga holds true for this formulation of the adjoint Green’s function. Equations 42 through 45 require
various terms involving derivatives of the Green’s function to Lilley’s equation. These expressions are found
analytically based on the numerical calculation of g. The various derivatives of g used in Eqns. 42 through 45
with respect to the various spatial directions are,

∂g

∂x
=
−i cos θ
8π2c3∞R

exp [−iω(x cos θ −R)/c∞]
∞∑
m=0

fm(r) cos(mφ) (46)

∂2g

∂x2
=
−ω cos2 θ

8π2c4∞R
exp [−iω(x cos θ −R)/c∞]

∞∑
m=0

fm(r) cos(mφ) (47)
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∂g

∂φ
=

−m
8π2ωc2∞R

exp [−iω(x cos θ −R)/c∞]
∞∑
m=0

fm(r) sin(mφ) (48)

∂

∂x

(
1
r

∂g

∂φ

)
=

im cos θ
8rπ2c3∞R

exp [−iω(x cos θ −R)/c∞]
∞∑
m=0

fm(r) sin(mφ) (49)

Equations 46 through 49 are used with Eqns. 42 through 45 to find the vector Green’s function based
on Lilley’s equation at various streamwise locations. Equations 42 through 45 and corresponding complex
conjugates can be used in Eqn. 38.

Implementation

The mathematical models developed in the previous section are implemented in the computer program
RANS Integration for Shock Noise (RISN). RISN is a collection of jet noise prediction models that are based
on various acoustic analogies and are being developed at NASA Langley Research Center (LaRC). The
various prediction methodologies allow total noise predictions based on a summation of jet noise components
from axisymmetric or three dimensional jets that are heated, off-design, and compressible. Acoustic analogies
are developed for each noise source (eg: BBSAN, fine-scale, large-scale, screech, etc.) and the sources and
propagation are treated separately.

The implementation of the model in the absence of propagation effects is described fully in Morris and
Miller.1 The model developed in this paper is implemented using the same strategy but with an additional
subroutine to calculate the vector Green’s functions. The model Eqn. 38 is evaluated for each observer
position x. This involves an integration over the sources of BBSAN in the jet plume. That is, where the
turbulence is interacting with the oblique shock waves in the shear layer. The range of integration in the
streamwise direction (for single stream jets) is generally taken to extend from the nozzle exit to the end
of the potential core and in the cross-stream direction from the centerline axis through twice the nozzle
diameter. The integral associated with the axial wavenumber k1, is performed by using the trapezoidal rule.
Only peaks of p̃s are included in the numerical integration as small values of p̃s have negligible contribution
to the magnitude of BBSAN. This is accomplished by integrating from the main peak of p̃s to typically half
the range of p̃s over both negative and positive wavenumbers.

The Fourier transform of the shock cell pressure is found by extracting the static pressure along a line
from the nozzle lip through the termination of each oblique shock wave. Typically this line extends from
the nozzle lip to a downstream location near the jet centerline axis past the potential core where the shock
pressure is near ambient value. These pressures are transformed to a shock pressure, ps, by subtracting the
ambient pressure, p∞. This data is mirrored about x = 0 and a Hanning window is applied. A discrete
Fourier transform is performed and the Hanning window correction factor of eight thirds is applied to the
amplitude. This process yields p̃s.

The newly developed prediction model and other associated models in RISN require a knowledge of a mean
flow. Mean flows are determined from solutions of the Steady Reynolds-Averaged Navier-Stokes Equations
(SRANS). The SRANS solutions are found using the NPARC Alliance Wind-US 2.0 solver. Wind-US was
developed by the NPARC Alliance which is a partnership between NASA Glenn Research Center (GRC),
the U. S. Air Force Arnold Engineering Development Center, and additional contributors. Solutions from
Wind-US are found using the default options of the CFD solver. The SRANS equations are closed by the
Menter28 shear stress transport (SST) turbulence model.

The computational grids for the SRANS solutions are constructed with Gridgen. The nozzle geometries
used in the corresponding experiments are imported from Computer Aided Design (CAD) files from which
the nozzles were manufactured. A computational domain for the jet plume is constructed downstream of the
nozzle exit. The inside and outside walls of the nozzles, along with the nozzle lip thickness, are all accurately
incorporated in the computational grid. The computational domains are structured and contain a single
block representing the inside of the nozzle, a single block representing the outside of the nozzle upstream
from the nozzle lip, and finally a single block that represents the plume region of the jet. An additional nozzle
interior block is used for the dual stream jets. The plume region extends 100 nozzle diameters downstream
from the nozzle exit and fifty nozzle diameters in the radial direction from the jet centerline. Based on the
largest fully expanded Mach number, total temperature ratio, and y+ = 1, the distance from the wall to the
first grid point is set at the nozzle exit. This distance is maintained through the entire internal region of
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the nozzle. This spacing allows the turbulent boundary layer at the nozzle wall to be resolved. The distance
from the nozzle centerline to the first internal gridpoint in the radial direction is ten times the value of the
distance from the first grid point to the wall at the nozzle exit. A complete description of the computational
grids and methods for finding Wind-US 2.0 SRANS solutions with the Menter28 SST model can be found in
Miller and Veltin.29

The developed model equations and the adjoint vector Green’s function solver both make use of the
SRANS solutions. Specifically, the adjoint vector Green’s function solver requires radial profiles of the mean
flow solution at each streamwise location. Unfortunately, the mean flow computational grid that is in Wind-
US is too coarse to march in the r direction using a Runge-Kutta scheme when solving Eqn. 40. The adjoint
vector Green’s function solver first examines the mean flow solution at the current streamwise location and
interpolates the values of the mean flow onto a finer grid. The spacing of the grid is set at 1× 10−5 meters.
The range of the interpolated region extends from 0.0001m < r < rmax. Typically rmax is equal to the
diameter of the nozzle. Equation 40 is evaluated at each streamwise location by marching from r = 0.0001
m in the positive r direction using fourth-order accurate Runge-Kutta integration. The initial conditions for
Eqn. 40 are fm = amr

m and dfm/dr = ammr
m−1 for each mode. The values of am are found to match the

inner and outer solutions of undisturbed incoming waves, and are found from Eqn. 41.
Equation 39 uses the values of fm at each streamwise location x and frequency. Values of fm are never

stored but summed when calculating ga(x, y, ω) (Eqn. 39) as the index m is increased. The maximum value
of m used in these calculations is set at 77. Higher values do not increase the accuracy of the numerical
calculation. After the summation of fm(r) cos(mφ) is complete, it is multiplied by the prefactor shown in
Eqn. 39. The adjoint Green’s function of the linearized Euler equations for a locally parallel mean flow is now
known as ga. Recall that the vector Green’s function used in the developed acoustic analogy is not based on a
shear layer with a parallel mean flow but with an arbitrary mean flow. Thus, it is necessary to relate the form
of ga to that of the vector Green’s function used in Eqn. 38. First, the derivatives of ga are calculated based
on Eqns. 46 through 49. Note that these equations involve the same summation involved in Eqn. 39 but not
for Eqns. 48 and 49. During the summation involving fm cos(mφ), the summation of fm(r) sin(mφ) is also
performed for sub-sequential calculation of Eqn. 48 and 49. As before, these summations are performed over
modes zero through 77, and then multiplied by their respective prefactors.

The values of ga and associated derivatives are used as arguments in Eqns. 42 through 45 which in turn,
are arguments for Eqn. 38. Recall that the SRANS solution and grid used for integration of Eqn. 38 reside on
much coarser computational grids relative to the discrete solution of Eqn. 39. This is due to the need to solve
fm accurately at each streamwise location. This fine grid does not necessarily have grid points at locations
that correspond to the integration region used in Eqn. 38 in the radial direction. Thus, it is necessary for the
adjoint vector Green’s function solver to interpolate the values of ga and πng onto the same grid points that are
used by Eqn. 38. Linear interpolation is used for this process at each streamwise location. This interpolation
is performed by the adjoint vector Green’s function solver subroutine and returned as arguments to the
subroutine that contains Eqn. 38. That is, the radially varying discrete values of ga and πng are returned to
the calling routine as arrays that correspond to the current streamwise location. The adjoint vector Green’s
function solver is written in a general fashion so that the noise models of Tam and Aurialt,24 Morris and
Boluriaan,25 and the newly developed BBSAN model, all use the same subroutine without modification. This
is advantageous because the same values of ga and πng , based on the same SRANS solution, are returned to
each model.

The fine-scale mixing noise models of Tam and Aurialt24 and Morris and Boluriaan25 have been imple-
mented in the computer program RISN. These models provide expressions for the spectral density due to
the fine-scale turbulent mixing and are similar or based on acoustic analogies. These models are simple to
implement due in part to the modular design of the RISN code and the large number of arguments that
are similar to those of the BBSAN models. Both models consist of spatial integrals that involve mean flow
components, turbulence statistics based on the mean flow, and ga or πng . In the model of Tam and Auriault24

the Green’s function is based on the parallel flow assumption and is the same Green’s function of Eqn. 39.
The model of Morris and Boluriaan25 uses the form of the vector Green’s function of the linearized Euler
equations shown in Eqns. 42 and 43. The vector Green’s function of the linearized Euler equations is required
for the evaluation of the developed prediction model for BBSAN in Eqn. 38. Thus, it is simple to include
these mixing noise models as additional calculations in the RISN code as two additional subroutines.

The BBSAN models contain coefficients that relate the turbulent kinetic energy and dissipation to char-
acteristic turbulence length, velocity, and time scales. The mixing noise models of Tam and Auriault24 and
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Morris and Boluriaan25 contain similar relations. The same simple models are chosen for l, l⊥, τ , and uc
for both mixing-noise prediction methods. However, different coefficients and scaling prefactors are required
for each model. The fine-scale mixing noise model of Tam and Auriault24 uses a mean flow based on a K-ε
model that was specifically designed by Tam and Ganesan30 for hot axisymmetric jet flows. The SRANS
solutions obtained for the present predictions are based on the Menter28 SST turbulence model closure co-
efficients and the Wind-US 2.0 solver. There is a clear difference between solutions produced by different
CFD solvers and turbulence models. An effort has been made to calibrate the coefficients of the model of
Tam and Auriault24 to correspond to the Menter SST turbulence model. It is acknowledged there is some
difference in the mean flows between the two closure schemes. This calibration includes the prefactor scaling
coefficient. The same calibration has been performed for the model of Morris and Boluriaan,25 which is
based on a general CFD SRANS solution such as one produced by Wind-US. The coefficients used in the
model of Morris and Boluriaan25 are those used in the paper and only the prefactor has been changed.

RISN is able to make noise predictions using either unstructured or structured SRANS solutions. The
type of grid, tetrahedral, polyhedral, etc., has no bearing on the prediction for any kind of noise model. This
advantage is obtained by interpolating the mean flow and turbulence statistics onto another computational
domain (integration region) that is structured and positioned in the jet plume. Inverse distance weighted
interpolation using close points is used to find the integration region values. The integration region contains
the jet noise sources. This greatly simplifies the integration techniques used in the code as it is independent
of the CFD grid. The BBSAN noise models of Eqns. 54 and 38, and the fine-scale turbulent mixing noise
models of Morris and Boluriaan25 and Tam and Auriault24 all use the same schemes to interpolate the CFD
solution onto the structured integration region. The integration region is structured and has constant grid
spacing in the streamwise and radial directions. It can easily be placed anywhere in the CFD domain and
interpolation can occur across blocks of the CFD solution. Grid independence studies have been conducted
to ensure that the SRANS solution has converged. Details of these convergence studies are given by Miller
and Veltin.31 A separate grid independence study is also conducted for each noise model implemented in
RISN. The range in the streamwise and radial directions is varied as well as the number of grid points in
the streamwise and cross-stream direction. These values are all increased individually for each case until the
SPL at the lowest amplitudes calculated vary by less than 0.5 dB. The integration ranges of the BBSAN
models are discussed at length in Miller and Morris.29 The ranges of the mixing noise integration region
varies from case to case. In general, the integration region extends from the nozzle exit to a distance of forty
nozzles downstream (0 < x < 40D) and in the radial direction from the centerline axis to a distance of ten
nozzle diameters (0 < r < 10D).

Results

This section presents predictions using the BBSAN and fine-scale mixing noise models. First, a description
of the nozzles is given. The operating conditions for the nozzles are then shown. The CFD solutions of these
nozzles operating over a range of conditions is discussed. Finally, the predictions based on the noise models
are compared with experimental data.

A number of nozzle geometries and operating conditions have been selected. The convergent nozzle
SMC000, shown in Fig. 1, and exit diameter of 0.0508 meters is chosen to test a wide range of conditions.
A convergent-divergent nozzle designated as PSU000, shown in Fig. 2, designed at the Pennsylvania State
University, is also selected. It has a design Mach number of 1.50 and an exit diameter of 0.0127 meters. This
nozzle and associated experimental data are courtesy of Professor D. K. McLaughlin of the Pennsylvania
State University. Finally, a dualstream nozzle, shown in Fig. 3, with convergent primary (core) and secondary
(fan) streams is selected with primary nozzle exit diameter of 0.0622 meters, secondary nozzle exit inner
diameter of 0.101716 meters, and outer diameter of 0.15248 meters. The dualstream nozzle exits are off-set
with the secondary stream exit 0.0984 meters upstream of the primary nozzle exit. This Boeing nozzle is
selected to help illustrate the effect of the high speed secondary stream on the primary stream’s BBSAN
sources. This nozzle geometry and associated experimental data are courtesy of Dr. K. Viswanathan of the
Boeing Company.

The nozzle operating conditions are summarized in Table 1 for single stream jets and Table 2 for dual-
stream jets. The case name describes the nozzle used and has an associated run number as a suffix. For
each case there are corresponding NPR and TTR values as well as the fully expanded Mach number Mj . A
subscript of p denotes the value for the primary flow or core nozzle and a subscript of s denotes the operating
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condition of the secondary stream or fan flow. These cases are selected based on available experimental data
and represent a wide range of over- and under-expanded conditions. In addition, a wide range of TTR are
chosen to examine temperature effects on the noise predictions.

SRANS solutions are produced by the Wind-US 2.0 solver for each case shown in Tables 1 and 2. To
illustrate the flow-fields produced, a specific result is shown from each nozzle geometry and a single operating
condition. In Fig. 4 the SMC000 nozzle is shown with contours of static pressure. The SMC000 nozzle is
operating at Mj = 1.39 and TTR = 3.20. Since the nozzle is operating off-design and under-expanded,
Prandtl-Meyer expansion waves form on the nozzle lip. This pressure imbalance leads to the shock cell
structure shown. Figure 5 shows the PSU convergent-divergent Md = 1.50 nozzle operating at Mj = 1.30
and TTR = 2.20. Contour plots of the streamwise velocity u, are shown. In this case the flow is over-
expanded and a conical oblique shock wave forms on the nozzle lip and terminates as a barrel (normal)
shock. This pressure imbalance also results in a shock cell structure that can be seen in the velocity
field. The nature of the flows of over- and under-expanded jets are very different due to the initial oblique
shock wave or Prandtl-Meyer expansion wave. Figure 6 shows the Boeing Company nozzle operating at
NPRp = 2.40, TTRp = 2.70, Mjp = 1.192, NPRs = 1.80, TTRs = 1.00, and Mjs = 0.959. Contours
of Mach number are shown. Both the core and fan nozzles are convergent, thus either stream can operate
on-design, under-expanded, or subsonically.

It should be noted that the width of a shock wave is typically a few mean free paths and the computational
grid can not resolve them. Specific numerical methods have been developed to better capture the shock waves
that exist in off-design supersonic jets. Unfortunately, the Wind-US 2.0 solver has no special treatment for
shock waves. Standard second order Roe32 flux vector splitting is used for spatial discretization and this
causes the shocks to become damped prematurely in the downstream direction.

BBSAN must propagate through a very high speed shear layer before it can propagate to the far-field
observer. The mean flow has very little effect near the sideline location. In the dualstream case there are
essentially two high speed shear layers near the nozzle exits. The source locations of BBSAN can be located
by plotting the integrand of the model equations as shown by Miller29 or by examining source distribution
contour maps from acoustic arrays such as the Deconvolution Approach for the Mapping of Acoustic Sources
(DAMAS) created by Brooks et al.33 Both of these studies validate the source locations of BBSAN. The
effects of these shear layers will be explored in the following jet noise predictions.

Before showing the jet noise predictions the format of their presentation is discussed. The predictions of
the two BBSAN models and the two mixing noise models are shown in Figures 7 through 22. Each figure
represents jet noise predictions from a nozzle and corresponding operating condition summarized in Table 1
and 2 with corresponding experimental data. The formats of each figure are similar. For example, in Fig. 9
there are six sets of spectra shown and each one represents a different observer position. Observer positions
are at one hundred nozzle diameters from the primary nozzle exit at inlet angles, Ψ, shown in the upper
left hand corner. The downstream direction is represented by values of Ψ greater than ninety degrees. The
frequency is non-dimensional in the form of the Strouhal number, St, using the fully expanded jet velocity
uj and the fully expanded diameter Dj . The y axis represents the Sound Pressure Level (SPL) per unit St.
This is calculated by adding 10 log10(uj/Dj) to the power spectral density (SPL per unit Hz). Each set of
experimental data is shown in red, the fine-scale mixing noise predictions of Tam and Auriault24 are orange,
the fine-scale mixing noise predictions of Morris and Boluriaan25 are blue, the BBSAN predictions using
Eqn. 54 (see Appendix A) are green (labeled as M5R3), and the newly developed BBSAN model Eqn. 38 are
colored black (labeled M6R2). Predictions of the noise produced by the large-scale coherent turbulence are
not included in this study. The noise from the large-scale turbulent structures dominate the spectra in the
downstream direction. In this direction it is expected that the predictions of BBSAN and fine-scale mixing
noise will be much lower than the experimental measurement.

The convergent SMC000 nozzle operating sonically and with TTR = 1.00 is shown in Fig. 7. Since the
jet is not supersonic or off-design there is no BBSAN present. Generally both fine-scale mixing noise predic-
tions over-estimate the fine-scale mixing noise in the sideline and upstream directions. In the downstream
direction the large-scale mixing noise dominates the fine-scale mixing noise. In the downstream region, the
predictions of fine-scale mixing noise are reduced by approximately four dB relative to the sideline and
upstream directions. In Figs. 8 and 9 the same TTR (unheated) is used, and the fully expanded Mach num-
bers are increased to Mj = 1.24 and Mj = 1.39 respectively. These two cases are operating supersonically,
off-design, and unheated. Predictions of the BBSAN using Eqns. 54 and 38 are shown in green and black
respectively. At the sideline locations in Figs. 8 and 9 the differences between the two BBSAN models are
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relatively small. This is due to the negligible effects that the shear layer has on the BBSAN propagating in
the sideline direction. By examining the differences between the predictions of the two BBSAN models at
various angles other than the sideline location, the effects of the mean flow on the BBSAN can be observed.
For the cases SMC0002 and SMC0003 in the upstream direction, the half-width of the main BBSAN peak is
narrower and generally has a higher rate of decay at lower St when mean flow effects are included. However,
this is a relatively small effect in the single jet case. This can be observed best at angles ψ = 50 and ψ =
70 degrees. In the downstream direction the opposite is true and the BBSAN decays at a lower rate when
mean flow effects are included. At the sideline location the fine-scale mixing effects generally scale well with
the experimental data. At the highest Mj the fine-scale predictions agree much better compared with the
sonic case.

The large-scale turbulent mixing noise in the downstream direction dominates both the BBSAN and
fine-scale mixing noise. The predictions do not include the contribution to mixing noise from large-scale
coherent turbulence. Since the large-scale turbulent structures are the cause of Mach wave radiation and
the large-scale turbulent mixing noise is dominant in almost every case in the downstream direction. For
example, in Fig. 7 at Ψ = 150 degrees the fine-scale mixing noise predictions are dominated by the noise due
to large-scale coherent turbulence.

Figure 10 shows the SMC000 nozzle operating at the sonic condition and TTR = 2.70. This corresponds
to the same conditions and predictions shown in Fig. 7 but with heating. The fine-scale mixing predictions of
case SMC0004 agree much better with experimental data than SMC0001. This is illustrated at the sideline
location where both the models of Tam and Auriault24 and Morris and Boluriaan25 agree very well at the
peak frequency and above. Both models slightly over-predict the noise at low frequencies. In the upstream
direction the peak levels are approximately two dB too high at ψ = 50. In the downstream direction the
large-scale mixing noise dominates the fine-scale mixing noise.

Holding the TTR constant at 2.70, the NPR is increased to obtain fully expanded Mach numbers of 1.24
and 1.39. These experimental results and predictions are shown in Figs. 11 and 12 respectively. Examining
the sideline location in Figs. 11 and 12 shows that there is little effect on the BBSAN due to mean flow shear
layer effects. At most the predictions differ by one dB at any St and have a nearly identical shape. In the
upstream direction the mean flow has the effect of narrowing the peaks and there are more significant effects
of the mean flow on the BBSAN. At ψ = 110 degrees the BBSAN model with mean flow effects over-predicts
the experimental levels while the absence of mean flow effects causes an under-prediction of the experimental
data. This effect is less pronounced for the SMC0006 case relative to the SMC0005 case. Similar effects are
also observed in Figs 8 and 9.

The fine-scale turbulent mixing noise in Figs. 11 and 12 follows the same trend seen in Fig. 10. Over-
prediction by two to four dB at lower frequencies is shown in the upstream direction in Fig. 12. The peak
magnitude of both fine-scale mixing models agrees very well with experimental values in the sideline and
upstream direction.

Figures 13 through 15 show the SMC000 nozzle operating at TTR = 3.20 and Mj = 1.00, Mj = 1.24, and
Mj = 1.39 respectively. Case SMC0007 shown in Fig. 13 is operating sonically and only the fine-scale and
large-scale turbulent mixing noise is present in the experimental data. The fine-scale mixing noise models of
Tam and Auriault24 and Morris and Boluriaan25 both perform extremely well. Though over-prediction can
be seen in the lower frequencies by up to six dB. The BBSAN in Figs. 13 through 15 demonstrates a similar
behavior to the previous predictions. Richer spectral content is evident by the larger number of BBSAN
peaks in the upstream direction, as shown in Fig. 15 at ψ = 50 degrees. In the downstream direction the
mean flow has a greater effect on the BBSAN by changing the shape of the spectra and slightly changing its
amplitude.

The Penn State convergent-divergent nozzle has a design Mach number of 1.50 and exit diameter of
0.0127 m. Figure 16 shows noise spectra and predictions of the over-expanded jet produced by operating at
Mj = 1.30 and TTR = 1.00. The predictions at ψ = 50 degrees are not shown because experimental data is
not available at this location. This prediction aligns with experimental data at the peak but over-predicts
the BBSAN at higher frequencies by about two dB. In the upstream direction the BBSAN peak is narrower,
which is similar to the results of the SMC000 convergent nozzle. In the downstream direction, the BBSAN
predictions with mean flow effects are highly damped. This is best illustrated at an observer angle of ψ = 150
degrees. The experimental spectrum at ψ = 130 degrees shows two peaks of BBSAN. This is not captured
with Eqn. 54 that uses the free space Green’s function but is captured with Eqn. 38 that uses the adjoint
vector Green’s function solver. In all cases, the fine-scale mixing noise models under-predict the experiment.
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Recall that shock cells alter the structure of the jet and have a small effect on the fine-scale mixing noise.
Figure 17 shows spectra for an over-expanded jet at Mj = 1.30 and the TTR is increased from 1.00 to

2.20 from the previous case. As in the unheated case, at the sideline location the model of Eqn. 38 is two
dB higher than the unheated case. The spectrum shapes are almost identical. The fine-scale mixing noise
under-predicts the experimental spectra at all angles just as in the unheated case. This under-prediction
varies by eight to ten dB. The shock cell structure and screech tone can greatly change the two-point fourth
order cross-correlation of the turbulent velocity fluctuations. Since the BBSAN predictions use a different
set of calibration coefficients for all over-expanded jets relative to under-expanded jets, it is possible that
the mixing noise models would show improved accuracy by using a different set of turbulence coefficients for
over-expanded jets.

The final two single stream cases are shown in Figs. 18 and 19. The same convergent-divergent PSU
nozzle is used but is operating at Mj = 1.70. The spectra in Fig. 18 result from an unheated jet and the
spectra in Fig. 19 are for TTR = 2.20. The addition of heating has eliminated the screech tone and thus
altered the BBSAN. Screech tones typically lower the peak BBSAN frequency and raise its amplitude at
the sideline location, which is generally free from mean flow propagation effects. This slight effect can be
observed by comparing the sideline locations between Figs. 18 and 19. At the sideline locations the shape of
the predicted BBSAN spectra are nearly identical but the unheated case is lower by two dB. The fine-scale
turbulent mixing noise in the unheated and heated cases under-predict the experiment. In the unheated
case the Tam and Auriault24 model has better agreement with the experiment than that of Morris and
Boluriaan.25 In the heated case both models under-predict the fine-scale mixing noise by six to eight dB.

The effect of varying the TTR and holding Mj = 1.39 constant at the sideline location results that at
TTR = 1.00 the peak BBSAN is 115 dB (Fig. 9), at TTR = 2.70 it is 118 dB (Fig. 12), and at TTR = 3.20
it is 118 dB (Fig. 15). The saturation of the amplitude of BBSAN with temperature agrees with the recent
observations of Viswanathan et al.19 and Kuo et al.18 The relative independence of BBSAN scaling with
respect to stagnation temperature was first observed by Harper-Bourne and Fisher.2 In all three cases,
the BBSAN models are under-predicting the peak level and over-predicting the peak frequency. Screech
is present at all TTR and will raise the BBSAN levels by up to three to four dB while lowering the peak
frequency relative to the non-screeching jet. The temperature correction factor of Tam10 has been used to
account for the saturation of BBSAN with increasing temperature for Eqns. 38 and 54.

The effect of varying the TTR and holding Mj = 1.00 at the sideline location shows that at TTR = 1.00
the peak mixing noise is 88 dB, at TTR = 2.70 it is 100 dB, and at TTR = 3.20 it is 103 dB. The
predictions of Tam and Auriault24 and Morris and Boluriaan25 agree very well at the sideline locations in
terms of absolute magnitude for the heated cases. Both of these models have shown excellent scaling with
experimental data. The slight over-prediction of Morris and Boluriaan25 and the over-prediction by Tam
and Auriault24 by six decibels for the unheated case, causes some concern about the scaling of turbulent
kinetic energy and dissipation in the Menter28 SST turbulent model.

The predictions and experimental spectra of dualstream jets are now examined. Both the core and fan
nozzles are convergent as shown in Fig. 3. Figure 20 shows the jet noise spectra of the dual stream nozzle
operating at Mjp = 0.710, Mjs = 1.358, TTRp = 2.14, and TTRs = 1.00. These operating conditions give
a heated subsonic core-flow and supersonic off-design fan-flow. The shock cell structure of the fan-flow is
contained by the coannular fan stream between the ambient environment and the core-flow. Thus, there are
two regions of BBSAN sources. It has been shown by Miller and Morris16 that the dominant BBSAN source
location in this type of dualstream jet is the fan-stream ambient shear layer. However, this does not imply
that there are no BBSAN contributions from the core-flow shear layer. The mean flow effects on the BBSAN
sources contained in the fan-flow shear layer are identical to those of singlestream jets. The mean flow effects
on the core flow shear layer are much greater because it is surrounded by the high-speed secondary flow.

Examining the sideline location of Fig. 20, the predictions of the BBSAN can be seen with and without
mean flow effects. The prediction with mean flow effects, Eqn. 38, has an improved spectrum shape near the
main BBSAN peak compared to the prediction of Eqn. 54. Note that the jet is screeching and this affects
the spectral shape of BBSAN, making the experimental data have narrower peaks than its non-screeching
counterpart. Inclusion of the mean flow effects causes a more rapid decay of BBSAN at low frequencies and
a more gradual fall-off at higher frequencies relative to predictions of Eqn. 54. This trend can be seen at
the other observer angles. In the upstream direction, the effect of including the mean flow has caused the
BBSAN prediction to better capture the existence of a second BBSAN peak.

Fine-scale mixing noise predictions are also shown in Fig. 20. At all observer angles the prediction of
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Tam and Auriault24 is higher than Morris and Boluriaan25 but has very similar spectral shapes. At the
sideline location the model of Tam and Auriault24 over-predicts the mixing noise by approximately fifteen
dB and the prediction of Morris and Boluriaan25 over-predicts by seven dB.

Figure 21 shows predictions for the Boeing coannular nozzle operating at Mjp = 1.281, Mjs = 0.848,
TTRp = 2.870, and TTRs = 1.00. The core flow is hotter than the previous case and is now operating
supersonic and off-design. The secondary fan plume is high speed subsonic flow and contains no BBSAN
sources. The BBSAN spectra are very similar across all observer positions except at high inlet angles.
The lower frequency BBSAN is very flat in the upstream direction. The amplitudes of BBSAN predictions
using Eqn. 38 at the sideline and upstream directions show better agreement with the experiment compared
to BBSAN predictions using Eqn. 54. Unlike the previous dualstream case, the fine-scale mixing noise
predictions are lower than the experimental data, but predict the peak frequencies correctly. The model of
Tam and Auriault24 under-predicts the noise at the sideline location by two dB and the prediction of Morris
and Boluriaan25 under-predicts the noise at the sideline location by eight dB.

A final case is examined where both the core and fan streams are supersonic. The Boeing dualstream
nozzle operates at Mjp = 1.281, Mjs = 1.358, TTRp = 2.870, and TTRs = 1.00 and the noise spectra are
shown in Fig. 22. This case (DUAL7) is selected because it combines the difficulties inherent in the two
previous dualstream cases. At the sideline location the predictions of Eqn. 38 and Eqn. 54 show slightly
better agreement relative to magnitude and a much richer spectral content. Multiple BBSAN peaks can be
seen at the higher BBSAN harmonics. In the downstream direction similar results are seen compared to
previous BBSAN predictions relative to experimental data. The data in the upstream direction, particularly
at ψ = 50 degrees, represents the most important result of this paper. The BBSAN predictions of Eqn. 38
shows remarkable agreement with experimental data compared to the prediction of Eqn. 54. The predicted
spectrum that includes the vector Green’s function has much richer spectral content, the correct fall-off at
low and high frequencies, and excellent amplitude agreement until St = 11. The mixing noise predictions
are similar to those of Fig. 20.

Discussion and Conclusion

An acoustic analogy based on the Euler equations has been formed for BBSAN. The parameter values
for the model are provided by a steady mean flow solution of the RANS equations and the vector Green’s
function of the linearized Euler equations using an adjoint approach. This acoustic analogy reduces to the
model developed by Morris and Miller1 if the vector Green’s function of the linearized Euler equations for
a quiescent environment is used. Comparison of these two models shows that at the sideline location the
spectral shape is the same. Thus, the mean flow effects are minimal if the observer is at the sideline location
of the jet. In the downstream region the mean flow effects on BBSAN generally decrease the noise. In the
upstream direction the mean flow effects have more significance and the newly developed BBSAN model
shows better agreement with experimental data than predictions that neglect mean flow effects. The newly
developed model predictions show an increased number of broadband peaks, slightly better agreement in
amplitude relative to experimental results, faster decay at lower frequencies and slower decay at higher
frequencies relative to the peak frequency. These mean flow effects, although slight, generally yield more
accurate predictions relative to model of Morris and Miller.1 In particular, the BBSAN calculations for the
dualstream jets in the upstream direction show the most improvement.

It is important to note that one of the assumptions in the formulation of the adjoint vector Green’s
function solver is that the static pressure everywhere in the jet is equal to the ambient. Among a few other
assumptions, this assumption is necessary in order to form a single second order differential equation for the
pressure from the Euler equations. This assumption is valid for all subsonic jets and on-design supersonic
jets. Off-design supersonic jets have a shock cell structure due to the static pressure at the nozzle exit not
matching the ambient static pressure. The resultant shocks and Prandtl-Meyer expansions cause the static
pressure to be either much greater or much smaller than the ambient values. Thankfully, the BBSAN sources
exist near the outside of the jet in the shear layer and the pressure mismatch at these locations is very small.
The sources of fine-scale mixing noise exist in the high speed shear layer, the transition region, and the fully
developed region of the jet and are much more effected by this assumption. It is perhaps for this reason
that some of the mixing noise calculations of Tam and Auriault24 and Morris and Boluriaan25 differ so much
in amplitude relative to the experimental data. If a numerical adjoint vector Green’s function solver of the
linearized Euler equations is available that makes no assumption concerning the mean flow (in particular the
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static pressure of the jet being equal to the ambient) and make use of the SRANS calculations, then it is
expected that the fine-scale mixing noise predictions and BBSAN predictions of Eqn. 38 would have better
agreement with experiment.

The predictions do not include the contribution to mixing noise from large-scale coherent turbulence.
Since the large-scale turbulent structures are the cause of Mach wave radiation and the large-scale turbulent
mixing noise is dominant in almost every case in the downstream direction, a model needs to be constructed
for this purpose. The large-scale coherent turbulent structures are a time dependent phenomenon that is
highly dependent on the disturbances in the jet shear layer and the stability of the shear layer near the nozzle
exit. Also, these large-scale coherent turbulent structures are modeled in the development of the BBSAN
equations by Gaussian two-point space-time correlations. Thus, a Large Eddy Simulation (LES) which
captures the large-scale structures and filters out the small scale structures may yield accurate predictions
of the Mach wave radiation without the need to capture the noise from fine-scale turbulence, for example,
see Shur et al.34

The modular nature of RISN and the locally parallel adjoint vector Green’s solver for the linearized
Euler equations allowed implementation of the fine-scale mixing noise models of Tam and Auriault24 and
Morris and Boluriaan25 with ease. In general the fine-scale turbulent mixing noise models capture the peak
frequencies, peak amplitudes, and fall-off at high frequencies. At lower frequencies the models generally
had too slow a spectral fall-off relative to experimental data. This could easily be corrected with changes
described in the appendix of Morris and Boluriaan.25 In the downstream direction the fine-scale mixing
noise is dominated by the large-scale mixing noise. Thus, the fine-scale mixing noise models have little
contribution to the total noise in this direction.

The developed acoustic analogies for BBSAN and fine-scale mixing noise make use of a vector Green’s
function. The arguments of these models could easily be found by a numerical adjoint vector Green’s function
solver that makes no assumption about the flow-field or the geometry. In fact, use of a tailored vector Green’s
function could include the effects of reflection and refraction of the airframe, refraction due to the jet shear
layer, and propagation to the far-field without further modification to the acoustic analogies.

Appendix A

It will now be shown that Eqn. 38 reduces to the model equation of Morris and Miller.1 The mean
flow effects are neglected by using the Green’s function of the Helmholtz equation. This can be performed
by setting Eqns. 10 and 11 mean flow conditions to the ambient values, taking the Fourier transform with
respect to time, and finding the Green’s function. This yields,

g(x, z, ω) =
−1

4πc2∞|x− z|
exp [iω|x− z|/c∞] (50)

where z is a vector to the source locations. The vector Green’s function of the linearized Euler equations for
a quiescent environment based on Eqns. 10 and 11 are,

πng (x, y, ω) = δin

∫
z

∂

∂zi
δ(z − y)g(x, z, ω)dz (51)

Substituting Eqn. 50 into Eqn. 51 and simplifying the previous equation yields an expression for the
vector Green’s function in the absence of varying mean flow (which is very similar to the Green’s function
of the Helmholtz equation),

πng (x, y, ω) = − iωxn
4πc3∞x2

exp[iωx/c∞] (52)

Substituting Eqn. 52 into Eqn. 38 yields,

S(x, ω) =
1

16π3/2c4∞x
2

∫ ∞
−∞

...

∫ ∞
−∞

3∑
n=1

3∑
m=1

anm
xnxm
x2

ω2 exp[ik1y1]
Kl2⊥τs
l

ps(y)p̃s(k1, y2, y3)

×exp[−l2(k1 − ω cos θ/c∞)2/4− ω2l2⊥ sin2 θ/(4c2∞)]
1 + (1−Mc cos θ − uk1/ω)2

ω2τ2
s

dk1dy

(53)
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This expression for the spectral density provides no account for the mean flow effects but retains the ability
to specify anisotropic turbulence. Morris and Miller1 used the Proudman35 form for isotropic turbulence,
anmxnxm/x

2 = 1. Using this assumption and simplifying yields,

S(x, ω) =
1

16π3/2c4∞x
2

∫ ∞
−∞

...

∫ ∞
−∞

Kl2⊥
lτs

ps(y)p̃s(k1, y2, y3) exp[ik1y1]

×τ2
sω

2 exp[−l2(k1 − ω cos θ/c∞)2/4− ω2l2⊥ sin2 θ/(4c2∞)]
1 + (1−Mc cos θ − uk1/ω)2

τ2
sω

2
dk1dy

(54)

which is the model equation developed in Morris and Miller.1 This equation is applicable to three-dimensional
flow-fields, but has the simplifications of isotropic turbulence and no effects of BBSAN propagation induced
by variations of the shear layer mean flow.
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Tables

Table 1. Nozzle operating conditions for single stream jets.

Case NPR Mj TTR

SMC0001 1.893 1.00 1.00
SMC0002 2.556 1.24 1.00
SMC0003 3.154 1.39 1.00
SMC0004 1.893 1.00 2.70
SMC0005 2.556 1.24 2.70
SMC0006 3.154 1.39 2.70
SMC0007 1.893 1.00 3.20
SMC0008 2.556 1.24 3.20
SMC0009 3.154 1.39 3.20
PSU0001 2.770 1.30 1.00
PSU0002 4.930 1.70 1.00
PSU0003 2.770 1.30 2.20
PSU0004 4.930 1.70 2.20

Table 2. Nozzle operating conditions for dual stream jets.

Case NPRp Mjp TTRp NPRs Mjs TTRs

DUAL4 1.400 0.710 2.14 2.140 1.358 1.00
DUAL5 2.700 1.281 2.87 2.870 0.848 1.00
DUAL7 2.556 1.281 2.87 2.870 1.358 1.00
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Figures

Figure 1. The nozzle contour of the singlestream convergent SMC000 nozzle. D = 0.0508 m.

Figure 2. The nozzle contour of the singlestream convergent-divergent PSU nozzle. D = 0.0127 m.
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Figure 3. The nozzle contour of the dual stream nozzle. The core nozzle exit diameter is, Dp = 0.0622 m, the
fan nozzle exit inner diameter is 0.101716 m, and fan nozzle exit outer diameter, Ds = 0.15248 m.

Figure 4. Static pressure contour plot of the singlestream convergent SMC nozzle. The primary flow is
under-expanded and supersonic operating at Mj = 1.39 and TTR = 3.20.

Figure 5. Streamwise velocity, u, contour plot of the convergent-divergent PSU nozzle. The jet flow is over-
expanded and supersonic operating at Mj = 1.30 and TTR = 2.20.
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Figure 6. Mach number contour plot of the dualstream nozzle. The primary flow is under-expanded and
supersonic operating at Mj = 1.192 and TTR = 2.70 and the secondary flow is operating at Mj = 0.959 and
TTR = 1.00.

24 of 40

American Institute of Aeronautics and Astronautics



Figure 7. The noise spectra from the SMC000 nozzle case SMC0001, Md = 1.00 D = 0.0508 m, with operating
conditions Mj = 1.00 and TTR = 1.00, at a distance of R/D = 100 and observer angles Ψ.
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Figure 8. The noise spectra from the SMC000 nozzle case SMC0002, Md = 1.00 D = 0.0508 m, with operating
conditions Mj = 1.24 and TTR = 1.00, at a distance of R/D = 100 and observer angles Ψ.
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Figure 9. The noise spectra from the SMC000 nozzle case SMC0003, Md = 1.00 D = 0.0508 m, with operating
conditions Mj = 1.39 and TTR = 1.00, at a distance of R/D = 100 and observer angles Ψ.
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Figure 10. The noise spectra from the SMC000 nozzle case SMC0004, Md = 1.00 D = 0.0508 m, with operating
conditions Mj = 1.00 and TTR = 2.70, at a distance of R/D = 100 and observer angles Ψ.
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Figure 11. The noise spectra from the SMC000 nozzle case SMC0005, Md = 1.00 D = 0.0508 m, with operating
conditions Mj = 1.24 and TTR = 2.70, at a distance of R/D = 100 and observer angles Ψ.
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Figure 12. The noise spectra from the SMC000 nozzle case SMC0006, Md = 1.00 D = 0.0508 m, with operating
conditions Mj = 1.39 and TTR = 2.70, at a distance of R/D = 100 and observer angles Ψ.
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Figure 13. The noise spectra from the SMC000 nozzle case SMC0007, Md = 1.00 D = 0.0508 m, with operating
conditions Mj = 1.00 and TTR = 3.20, at a distance of R/D = 100 and observer angles Ψ.
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Figure 14. The noise spectra from the SMC000 nozzle case SMC0008, Md = 1.00 D = 0.0508 m, with operating
conditions Mj = 1.24 and TTR = 2.70, at a distance of R/D = 100 and observer angles Ψ.
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Figure 15. The noise spectra from the SMC000 nozzle case SMC0009, Md = 1.00 D = 0.0508 m, with operating
conditions Mj = 1.39 and TTR = 3.20, at a distance of R/D = 100 and observer angles Ψ.
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Figure 16. The noise spectra from the PSU000 nozzle case PSU0001, Md = 1.50 D = 0.0127 m, with operating
conditions Mj = 1.30 and TTR = 1.00, at a distance of R/D = 100 and observer angles Ψ. The experimental data
is courtesy of Professor D. K. McLaughlin of the Pennsylvania State University.
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Figure 17. The noise spectra from the PSU000 nozzle case PSU0003, Md = 1.50 D = 0.0127 m, with operating
conditions Mj = 1.30 and TTR = 2.20, at a distance of R/D = 100 and observer angles Ψ. The experimental data
is courtesy of Professor D. K. McLaughlin of the Pennsylvania State University.
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Figure 18. The noise spectra from the PSU000 nozzle case PSU0002, Md = 1.50 D = 0.0127 m, with operating
conditions Mj = 1.70 and TTR = 1.00, at a distance of R/D = 100 and observer angles Ψ. The experimental data
is courtesy of Professor D. K. McLaughlin of the Pennsylvania State University.
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Figure 19. The noise spectra from the PSU000 nozzle case PSU0004, Md = 1.50 D = 0.0127 m, with operating
conditions Mj = 1.70 and TTR = 2.20, at a distance of R/D = 100 and observer angles Ψ. The experimental data
is courtesy of Professor D. K. McLaughlin of the Pennsylvania State University.
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Figure 20. The noise spectra from the Boeing nozzle case Dual4, Mdp = 1.00 Dp = 0.06223 m Mds = 1.00m
Dsi = 0.1017 m Dso = 0.1525 m, with operating conditions Mjp = 0.710 Mjs = 1.358 and TTRp = 2.14 TTRs = 1.00,
at a distance of R/D = 100 and observer angles Ψ. The experimental data is courtesy of Dr. K. Viswanathan
of the Boeing Company.
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Figure 21. The noise spectra from the Boeing nozzle case Dual5, Mdp = 1.00 Dp = 0.06223 m Mds = 1.00m
Dsi = 0.1017 m Dso = 0.1525 m, with operating conditions Mjp = 1.281 Mjs = 0.848 and TTRp = 2.870 TTRs = 1.00,
at a distance of R/D = 100 and observer angles Ψ. The experimental data is courtesy of Dr. K. Viswanathan
of the Boeing Company.
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Figure 22. The noise spectra from the Boeing nozzle case Dual7, Mdp = 1.00 Dp = 0.06223 m Mds = 1.00m
Dsi = 0.1017 m Dso = 0.1525 m, with operating conditions Mjp = 1.281 Mjs = 1.358 and TTRp = 2.870 TTRs = 1.00,
at a distance of R/D = 100 and observer angles Ψ. The experimental data is courtesy of Dr. K. Viswanathan
of the Boeing Company.
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