22 research outputs found

    Oc017—Clinical And Noninterventional Trials Assessment In Croatia

    Get PDF

    Analysis of deep-ocean sediments from the TAG hydrothermal field (MAR, 26° N): application of short-wave infrared reflectance (SWIR) spectra for offshore geochemical exploration

    Get PDF
    Purpose The cost-efficient methods of analysis, such as rapid short-wave infrared (SWIR) spectral analysis, have been applied for the efficient exploration of critical raw materials (CRM), including mineral components and rare earth elements (REE) from the deep-ocean sediments. Methods Gravity cored sediment samples were collected during an oceanographic mission to the Trans-Atlantic Geotraverse (TAG) hydrothermal field of the Mid-Atlantic Ridge (MAR, 26° N). SWIR reflectance spectra (dependent variable) of samples were mathematically tested against referent geochemical data (independent variable), obtained by conventional analysis (ICP/OES, ICP/MS), after applied full cross-validation multivariate partial least square regression (CVPLSR). Value of parameter-residual predictive deviation (RPD) was used for evaluation of CVPLSR modeling: RPD > 2.5 (satisfactory calibration model for the screening purposes) and RPD > 5.0 (model adequate for the quality control of the studied elements). Results The CVPLSR modeling provided significant results for the determination of several mineral components: major elements (Fe and Si) had the values of RPD equal to 3.65 and 2.84, respectively, which indicated a viable potential for their routine analysis, whereas RPD for Ca was equal to 5.51, thus assuring its quality control by SWIR analysis, in sediment samples of the studied location. Among the REE, Ce (RPD = 2.55) and Er (RPD = 2.59) yielded the most satisfactory results. Conclusions The findings highlight the benefit of rapidly obtained empirical SWIR-reflectance data, which can be used for near-real-time exploration of geochemical deposits hosted in deep-ocean sediments

    XRD Identification of Ore Minerals during Cruises: Refinement of Extraction Procedure with Sodium Acetate Buffer

    Get PDF
    The on-board identification of ore minerals during a cruise is often postponed until long after the cruise is over. During the M127 cruise, 21 cores with deep-seafloor sediments were recovered in the Trans-Atlantic Geotraverse (TAG) field along the Mid Atlantic Ridge (MAR). Sediments were analyzed on-board for physicochemical properties such as lightness (L*), pH and Eh. Selected samples were studied for mineral composition by X-ray powder diffraction (XRD). Based on XRD data, sediment samples were separated into high-, low- and non-carbonated. Removal of carbonates is a common technique in mineralogical studies in which HCl is used as the extraction agent. In the present study, sequential extraction was performed with sodium acetate buffer (pH 5.0) to remove carbonates. The ratio between the highest calcite XRD reflection in the original samples (Iorig) vs its XRD-reflection in samples after their treatment with the buffer (Itreat) was used as a quantitative parameter of calcite removal, as well as to identify minor minerals in carbonated samples (when Iorig/Itreat > 24). It was found that the lightness parameter (L*) showed a positive correlation with calcite XRD reflection in selected TAG samples, and this could be applied to the preliminary on-board determination of extraction steps with acetate buffer (pH 5.0) in carbonated sediment samples. The most abundant minerals detected in carbonated samples were quartz and Al- and Fe-rich clays. Other silicates were also detected (e.g., calcic plagioclase, montmorillonite, nontronite). In non-carbonated samples, Fe oxides and hydroxides (goethite and hematite, respectively) were detected. Pyrite was the dominant hydrothermal mineral and Cu sulfides (chalcopyrite, covellite) and hydrothermal Mn oxides (birnessite and todorokite) were mineral phases identified in few samples, whereas paratacamite was detected in the top 20 cm of the core. The present study demonstrates that portable XRD analysis makes it possible to characterize mineralogy at cored sites, in particular in both low- and high-carbonated samples, before the end of most cruises, thus enabling the quick modification of exploration strategies in light of new information as it becomes available in near-real time

    Ocean-floor sediments as a resource of rare earth elements: an overview of recently studied sites

    Get PDF
    The rare earth elements (REE), comprising 15 elements of the lanthanum series (La-Lu) together with yttrium (Y) and scandium (Sc), have become of particular interest because of their use, for example, in modern communications, renewable energy generation, and the electrification of transport. However, the security of supply of REE is considered to be at risk due to the limited number of sources, with dependence largely on one supplier that produced approximately 63% of all REE in 2019. As a result, there is a growing need to diversify supply. This has resulted in the drive to seek new resources elsewhere, and particularly on the deep-ocean floor. Here, we give a summary of REE distribution in minerals, versatile applications, and an update of their economic value. We present the most typical onshore methods for the determination of REE and examine methods for their offshore exploration in near real time. The motivation for this comes from recent studies over the past decade that showed ΣREE concentrations as high as 22,000 ppm in ocean-floor sediments in the Pacific Ocean. The ocean-floor sediments are evaluated in terms of their potential as resources of REE, while the likely economic cost and environmental impacts of deep-sea mining these are also considered

    Metal preservation and mobilization in sediments at the TAG hydrothermal field, Mid‐Atlantic Ridge

    Get PDF
    At the Trans-Atlantic Geotraverse hydrothermal field, metalliferous sediments cover extinct hydrothermal mounds and the surrounding seafloor. Here, we report the morphological, mineralogical and geochemical processes that deposit these sediments, remobilize their metals, and affect their preservation. We found that the initial sediment metal tenor is controlled by physical transport of hydrothermal material from its source, followed by diagenetic redistribution and potentially diffuse fluid flow after high-temperature hydrothermal activity has ceased. We distinguished three different environments: (a) proximal metalliferous sediments on top of extinct mounds are mainly derived from oxidative weathering of primary sulfide structures and are predominantly composed of Fe oxyhydroxides with low contents of Cu, Co, and Zn; metal enrichments in specific layers are likely related to upward flow of low-temperature hydrothermal fluids; (b) medial distant metalliferous sediments found at the base of the mounds, deposited by mass transport, contain cm-thick layers of unsorted sulfide sands with high base metal contents (e.g., up to 28% Cu); these buried sulfides continue to undergo dissolution, resulting in metal release into porewaters; (c) distal metalliferous sediments, found in depositional basins a few hundreds of meters from the extinct mounds, include fining-upwards sequences of thin sulfide sand layers with Fe oxyhydroxides and were deposited by recurrent turbiditic flows. Dissolved metals (e.g., Cu2+ and Mn2+) diffuse upwards under reducing conditions and precipitate within the sediment. Hence, when using hydrothermal sediments to construct reliable geochronological records of hydrothermal activity, distance from source, local seafloor morphology, mass-transport and depositional, and diagenetic modification should all be considered

    Multivariate analysis applied to X-ray fluorescence to assess soil contamination pathways: case studies of mass magnetic susceptibility in soils near abandoned coal and W/Sn mines

    Get PDF
    Determining the origin and pathways of contaminants in the natural environment is key to informing any mitigation process. The mass magnetic susceptibility of soils allows a rapid method to measure the concentration of magnetic minerals, derived from anthropogenic activities such as mining or industrial processes, i.e., smelting metals (technogenic origin), or from the local bedrock (of geogenic origin). This is especially effective when combined with rapid geochemical analyses of soils. The use of multivariate analysis (MVA) elucidates complex multiple-component relationships between soil geochemistry and magnetic susceptibility. In the case of soil mining sites, X-ray fluorescence (XRF) spectroscopic data of soils contaminated by mine waste shows statistically significant relationships between magnetic susceptibility and some base metal species (e.g., Fe, Pb, Zn, etc.). Here, we show how qualitative and quantitative MVA methodologies can be used to assess soil contamination pathways using mass magnetic susceptibility and XRF spectra of soils near abandoned coal and W/Sn mines (NW Portugal). Principal component analysis (PCA) showed how the first two primary components (PC-1 + PC-2) explained 94% of the sample variability, grouped them according to their geochemistry and magnetic susceptibility in to geogenic and technogenic groups. Regression analyses showed a strong positive correlation (R2 > 0.95) between soil geochemistry and magnetic properties at the local scale. These parameters provided an insight into the multi-element variables that control magnetic susceptibility and indicated the possibility of efficient assessment of potentially contaminated sites through mass-specific soil magnetism
    corecore