34 research outputs found

    Challenges with using primer IDs to improve accuracy of next generation sequencing

    Get PDF
    Next generation sequencing technologies, like ultra-deep pyrosequencing (UDPS), allows detailed investigation of complex populations, like RNA viruses, but its utility is limited by errors introduced during sample preparation and sequencing. By tagging each individual cDNA molecule with barcodes, referred to as Primer IDs, before PCR and sequencing these errors could theoretically be removed. Here we evaluated the Primer ID methodology on 257,846 UDPS reads generated from a HIV-1 SG3Δenv plasmid clone and plasma samples from three HIV-infected patients. The Primer ID consisted of 11 randomized nucleotides, 4,194,304 combinations, in the primer for cDNA synthesis that introduced a unique sequence tag into each cDNA molecule. Consensus template sequences were constructed for reads with Primer IDs that were observed three or more times. Despite high numbers of input template molecules, the number of consensus template sequences was low. With 10,000 input molecules for the clone as few as 97 consensus template sequences were obtained due to highly skewed frequency of resampling. Furthermore, the number of sequenced templates was overestimated due to PCR errors in the Primer IDs. Finally, some consensus template sequences were erroneous due to hotspots for UDPS errors. The Primer ID methodology has the potential to provide highly accurate deep sequencing. However, it is important to be aware that there are remaining challenges with the methodology. In particular it is important to find ways to obtain a more even frequency of resampling of template molecules as well as to identify and remove artefactual consensus template sequences that have been generated by PCR errors in the Primer IDs

    Performance of Ultra-Deep Pyrosequencing in Analysis of HIV-1 pol Gene Variation

    Get PDF
    INTRODUCTION: Ultra-deep pyrosequencing (UDPS) has been used to detect minority variants within HIV-1 populations. Some aspects of the quality and reproducibility of UDPS have been previously evaluated, but comprehensive studies are still needed. PRINCIPAL FINDING: In this study the UDPS technology (FLX platform) was evaluated by analyzing a 120 base pair fragment of the HIV-1 pol gene from plasma samples from two patients and artificial mixtures of molecular clones. UDPS was performed using an optimized experimental protocol and an in-house data cleaning strategy. Nine samples and mixtures were analyzed and the average number of reads per sample was 19,404 (range 8,858-26,846). The two patient plasma samples were analyzed twice and quantification of viral variants was found to be highly repeatable for variants representing >0.27% of the virus population, whereas some variants representing 0.11-0.27% were detected in only one of the two UDPS runs. Bland-Altman analysis showed that a repeated measurement would have a 95% likelihood to lie approximately within ±0.5 log(10) of the initial estimate. A similar level of agreement was observed for variant frequency estimates in forward vs. reverse sequencing direction, but here the agreement was higher for common variants than for rare variants. UDPS following PCR amplification with alternative primers indicated that some variants may be incorrectly quantified due to primer-related selective amplification. Finally, the in vitro recombination rate during PCR was evaluated using artificial mixtures of clones and was found to be low. The most abundant in vitro recombinant represented 0.25% of all UDPS reads. CONCLUSION: This study demonstrates that this UDPS protocol results in low experimental noise and high repeatability, which is relevant for future research and clinical use of the UDPS technology. The low rate of in vitro recombination suggests that this UDPS system can be used to study genetic variants and mutational linkage

    Dynamics of HIV-1 Quasispecies during Antiviral Treatment Dissected Using Ultra-Deep Pyrosequencing

    Get PDF
    Background: Ultra-deep pyrosequencing (UDPS) allows identification of rare HIV-1 variants and minority drug resistance mutations, which are not detectable by standard sequencing. Principal Findings: Here, UDPS was used to analyze the dynamics of HIV-1 genetic variation in reverse transcriptase (RT) (amino acids 180–220) in six individuals consecutively sampled before, during and after failing 3TC and AZT containing antiretroviral treatment. Optimized UDPS protocols and bioinformatic software were developed to generate, clean and analyze the data. The data cleaning strategy reduced the error rate of UDPS to an average of 0.05%, which is lower than previously reported. Consequently, the cut-off for detection of resistance mutations was very low. A median of 16,016 (range 2,406–35,401) sequence reads were obtained per sample, which allowed detection and quantification of minorit

    Intrapatient evolution of HIV-1 in the context of coreceptor usage

    No full text
    The variable region 1 to 3 (V1-V3) of the HIV-1 envelope plays an important role in coreceptor usage. Early in infection HIV- 1 is using CCR5 as coreceptor to enter target cells (R5 viruses) whereas viruses using CXCR4 as coreceptor (X4 viruses) may appear later in infection. This broadening or switch in coreceptor usage is associated with progression to AIDS. In my thesis work, we have compared the molecular evolution of V1-V3 between virus populations that maintained CCR5 coreceptor usage (non-switch populations, nSP) with virus populations that used CXCR4 as coreceptor (switch populations, SP). We also developed a novel biological cloning system. We found an increase in the number of potential N-linked glycosylation sites in V1 -V3 over time in nSP, while SP showed no change. Since glycans are an important defense against neutralizing antibodies, we hypothesize that the antibody response differed between patients with SP and nSP. We found that V2 length and evolution of V3 charge differed between R5 viruses from SP and nSP, already before coreceptor switch in SP. Therefore, these molecular properties could prove important for understanding, and maybe even for predicting, the evolution of coreceptor usage in HIV-populations. Due to the presence of the X4 subpopulations, SP evolved faster compared to nSP. In addition, R5 and X4 from SP were subjected to different selective pressures. We showed that R5 and X4 viruses recombine frequently. We hypothesize that such rearrangements may affect antibody recognition of X4 and allow for antibody escape and expansion of X4 subpopulations

    Frequent intrapatient recombination between HIV-1 R5 and X4 envelopes: Implications for coreceptor switch.

    No full text
    Emergence of human immunodeficiency virus type 1 (HIV-1) populations that switch or broaden coreceptor usage from CCR5 to CXCR4 is intimately coupled to CD4(+) cell depletion and disease progression toward AIDS. To better understand the molecular mechanisms involved in the coreceptor switch, we determined the nucleotide sequences of 253 V1 to V3 env clones from 27 sequential HIV-1 subtype B isolates from four patients with virus populations that switch coreceptor usage. Coreceptor usage of clones from dualtropic R5X4 isolates was characterized experimentally. Sequence analysis revealed that 9% of the clones from CXCR4-using isolates had originated by recombination events between R5 and X4 viruses. The majority (73%) of the recombinants used CXCR4. Furthermore, coreceptor usage of the recombinants was determined by a small region of the envelope, including V3. This is the first report demonstrating that intrapatient recombination between viruses with distinct coreceptor usage occurs frequently. It has been proposed that X4 viruses are more easily suppressed by the immune system than R5 viruses. We hypothesize that recombination between circulating R5 viruses and X4 viruses can result in chimeric viruses with the potential to both evade the immune system and infect CXCR4-expressing cells. The broadening in cell tropism of the viral population to include CXCR4-expressing cells would gradually impair the immune system and eventually allow the X4 population to expand. In conclusion, intrapatient recombination between viruses with distinct coreceptor usage may contribute to the emergence of X4 viruses in later stages of infection

    HIV-1 molecular epidemiology in Guinea-Bissau, West Africa: origin, demography and migrations.

    Get PDF
    The HIV-1 epidemic in West Africa has been dominated by subtype A and the recombinant form CRF02_AG. Little is known about the origins and the evolutionary history of HIV-1 in this region. We employed Maximum likelihood and Bayesian methods in combination with temporal and spatial information to reconstruct the HIV-1 subtype distribution, demographic history and migration patterns over time in Guinea-Bissau, West Africa. We found that CRF02_AG and subsubtype A3 were the dominant forms of HIV-1 in Guinea-Bissau and that they were introduced into the country on at least six different occasions between 1976 and 1981. These estimates also corresponded well with the first reported HIV-1 cases in Guinea-Bissau. Migration analyses suggested that (1) the HIV-1 epidemic started in the capital Bissau and then dispersed into more rural areas, and (2) the epidemic in Guinea-Bissau was connected to both Cameroon and Mali. This is the first study that describes the HIV-1 molecular epidemiology in a West African country by combining the results of subtype distribution with analyses of epidemic origin and epidemiological linkage between locations. The multiple introductions of HIV-1 into Guinea-Bissau, during a short time-period of five years, coincided with and were likely influenced by the major immigration wave into the country that followed the end of the independence war (1963-1974)

    Differences in molecular evolution between switch (R5 to R5X4/X4-tropic) and non-switch (R5-tropic only) HIV-1 populations during infection.

    No full text
    The recent introduction of entry inhibitors in the clinic as components of antiretroviral treatment has heightened the interest in coreceptor use of human immunodeficiency virus type 1 (HIV-1). Viruses using CCR5 as coreceptor (R5 viruses) are generally present over the entire course of infection whereas viruses using the CXCR4 coreceptor (R5X4/X4 viruses) emerge in about 50% of infected individuals during later stages of infection. The CCR5-to-CXCR4 switch represents a concern because CCR5 inhibitors, while suppressing R5 viruses, may allow the emergence of CXCR4-tropic viruses. In this study, HIV-1 populations that maintained CCR5 usage during infection were compared with populations that switched coreceptor usage to include CXCR4 later during infection, with the aim to find molecular properties of the virus populations associated with the CCR5-to-CXCR4 switch. We amplified and molecularly cloned the V1-V3 region of the HIV-1 envelope from 51 sequential HIV-1 isolates derived from 4 to 10 serial samples for each of the patients. Four of the patients had virus populations that switched coreceptor usage to include CXCR4 (switch populations: SP) during infection and four patients had viral populations that maintained exclusive CCR5 usage (non-switch populations: nSP). Coreceptor usage was determined experimentally on individual clones from dualtropic R5X4 isolates. In nSP we found that the number of potential N-linked glycosylation sites (PNGS) increased over time, whereas no pattern of change was observed in SP. We also found differences in V2 length and V3 charge between R5 viruses of nSP and R5 viruses of SP before the switch. The V2 region was significantly longer in R5 viruses of SP compared to viruses of nSP throughout the course of infection, and the V3 charge increased with time in R5 populations from SP, while it remained unchanged or decreased in nSP. These molecular properties could prove important for understanding the evolution of coreceptor usage in HIV-1 populations, and maybe even for predicting an upcoming coreceptor switch at early stages after primary infection

    PCR-Induced Transitions Are the Major Source of Error in Cleaned Ultra-Deep Pyrosequencing Data

    Get PDF
    <div><p>Background</p><p>Ultra-deep pyrosequencing (UDPS) is used to identify rare sequence variants. The sequence depth is influenced by several factors including the error frequency of PCR and UDPS. This study investigated the characteristics and source of errors in raw and cleaned UDPS data.</p><p>Results</p><p>UDPS of a 167-nucleotide fragment of the HIV-1 SG3Δenv plasmid was performed on the Roche/454 platform. The plasmid was diluted to one copy, PCR amplified and subjected to bidirectional UDPS on three occasions. The dataset consisted of 47,693 UDPS reads. Raw UDPS data had an average error frequency of 0.30% per nucleotide site. Most errors were insertions and deletions in homopolymeric regions. We used a cleaning strategy that removed almost all indel errors, but had little effect on substitution errors, which reduced the error frequency to 0.056% per nucleotide. In cleaned data the error frequency was similar in homopolymeric and non-homopolymeric regions, but varied considerably across sites. These site-specific error frequencies were moderately, but still significantly, correlated between runs (r = 0.15–0.65) and between forward and reverse sequencing directions within runs (r = 0.33–0.65). Furthermore, transition errors were 48-times more common than transversion errors (0.052% vs. 0.001%; p<0.0001). Collectively the results indicate that a considerable proportion of the sequencing errors that remained after data cleaning were generated during the PCR that preceded UDPS.</p><p>Conclusions</p><p>A majority of the sequencing errors that remained after data cleaning were introduced by PCR prior to sequencing, which means that they will be independent of platform used for next-generation sequencing. The transition vs. transversion error bias in cleaned UDPS data will influence the detection limits of rare mutations and sequence variants.</p></div
    corecore