14 research outputs found

    Lunatic Fringe, FGF, and BMP Regulate the Notch Pathway during Epithelial Morphogenesis of Teeth

    Get PDF
    AbstractTeeth develop as epithelial appendages, and their morphogenesis is regulated by epithelial–mesenchymal interactions and conserved signaling pathways common to many developmental processes. A key event during tooth morphogenesis is the transition from bud to cap stage when the epithelial bud is divided into specific compartments distinguished by morphology as well as gene expression patterns. The enamel knot, a signaling center, forms and regulates the shape and size of the tooth. Mesenchymal signals are necessary for epithelial patterning and for the formation and maintenance of the epithelial compartments. We studied the expression of Notch pathway molecules during the bud-to-cap stage transition of the developing mouse tooth. Lunatic fringe expression was restricted to the epithelium, where it formed a boundary flanking the enamel knot. The Lunatic fringe expression domains overlapped only partly with the expression of Notch1 and Notch2, which were coexpressed with Hes1. We examined the regulation of Lunatic fringe and Hes1 in cultured explants of dental epithelium. The expression of Lunatic fringe and Hes1 depended on mesenchymal signals and both were positively regulated by FGF-10. BMP-4 antagonized the stimulatory effect of FGF-10 on Lunatic fringe expression but had a synergistic effect with FGF-10 on Hes1 expression. Recombinant Lunatic fringe protein induced Hes1 expression in the dental epithelium, suggesting that Lunatic fringe can act also extracellularly. Lunatic fringe mutant mice did not reveal tooth abnormalities, and no changes were observed in the expression patterns of other Fringe genes. We conclude that Lunatic fringe may play a role in boundary formation of the enamel knot and that Notch-signaling in the dental epithelium is regulated by mesenchymal FGFs and BMP

    Altered sulfation status of FAM20C-dependent chondroitin sulfate is associated with osteosclerotic bone dysplasia

    No full text
    Raine syndrome is associated with loss-of-function mutations of FAM20C. Here we show that Raine-originated mutations abrogate the interaction between FAM20C and C4ST-1 to alter chondroitin sulfate sulfation status and impact biomineralization in vitro and bone mineral density in vivo in mouse models, thereby serving clues for Raine syndrome etiology

    Functions of chondroitin sulfate/dermatan sulfate chains in brain development: Critical roles of E and iE disaccharide units recognized by a single chain antibody GD3G7.

    Get PDF
    Chondroitin sulfate (CS) and dermatan sulfate (DS) have been implicated in the processes of neural development in the brain. In this study, we characterized developmentally regulated brain CS/DS chains using a single chain antibody, GD3G7, produced by the phage display technique. Evaluation of the specificity of GD3G7 toward various glycosaminoglycan preparations showed that this antibody specifically reacted with squid CS-E (rich in the GlcUA1–3GalNAc(4,6-O-sulfate) disaccharide unit E), hagfish CS-H (rich in the IdoUA1–3GalNAc(4,6-O-sulfate) unit iE), and shark skin DS (rich in both E and iE units). In situ hybridization for the expression of N-acetylgalac-tosamine-4-sulfate 6-O-sulfotransferase in the postnatal mouse brain, which is involved in the biosynthesis of CS/DS-E, showed a widespread expression of the transcript in the developing brain except at postnatal day 7, where strong expression was observed in the external granule cell layer in the cerebellum. The expression switched from the external to internal granule cell layer with development. Immunohistochemical localization of GD3G7 in the mouse brain showed that the epitope was relatively abundant in the cerebellum, hippocampus, and olfactory bulb. GD3G7 suppressed the growth of neurites in embryonic hippocampal neurons mediated by CS-E, suggesting that the epitope is embedded in the neurite outgrowth-promoting motif of CS-E. In addition, a CS-E decasaccharide fraction was found to be the critical minimal structure needed for recognition by GD3G7. Four discrete decasaccharide epitopic sequences were identified. The antibody GD3G7 has broad applications in investigations of CS/DS chains during the central nervous system's development and under various pathological conditions

    A secretory protein neudesin regulates splenic red pulp macrophages in erythrophagocytosis and iron recycling

    No full text
    Abstract Neudesin, originally identified as a neurotrophic factor, has primarily been studied for its neural functions despite its widespread expression. Using 8-week-old neudesin knockout mice, we elucidated the role of neudesin in the spleen. The absence of neudesin caused mild splenomegaly, shortened lifespan of circulating erythrocytes, and abnormal recovery from phenylhydrazine-induced acute anemia. Blood cross-transfusion and splenectomy experiments revealed that the shortened lifespan of erythrocytes was attributable to splenic impairment. Further analysis revealed increased erythrophagocytosis and decreased iron stores in the splenic red pulp, which was linked to the upregulation of Fcγ receptors and iron-recycling genes in neudesin-deficient macrophages. In vitro analysis confirmed that neudesin suppressed erythrophagocytosis and expression of Fcγ receptors through ERK1/2 activation in heme-stimulated macrophages. Finally, we observed that 24-week-old neudesin knockout mice exhibited severe symptoms of anemia. Collectively, our results suggest that neudesin regulates the function of red pulp macrophages and contributes to erythrocyte and iron homeostasis

    Genetic manipulation resulting in decreased donor chondroitin sulfate synthesis mitigates hepatic GVHD via suppression of T cell activity

    No full text
    Abstract Donor T cell activation, proliferation, differentiation, and migration are the major steps involved in graft-versus-host disease (GVHD) development following bone marrow transplantation. Chondroitin sulfate (CS) proteoglycan is a major component of the extracellular matrix and causes immune modulation by interacting with cell growth factors and inducing cell adhesion. However, its precise effects on immune function are unclear than those of other proteoglycan families. Thus, we investigated the significance of CS within donor cells in acute GVHD development utilizing CSGalNAc T1-knockout (T1KO) mice. To determine the effects of T1KO, the mice underwent allogenic bone marrow transplantation from major histocompatibility complex-mismatched donors. While transplantation resulted in hepatic GVHD with inflammatory cell infiltration of both CD4+ and CD8+ effector memory T cells, transplantation in T1KO-donors showed milder cell infiltration and improved survival with fewer splenic effector T cells. In vitro T-cell analyses showed that the ratio of effector memory T cells was significantly lower via phorbol myristate acetate/ionomycin stimulation. Moreover, quantitative PCR analyses showed significantly less production of inflammatory cytokines, such as IFN-γ and CCL-2, in splenocytes of T1KO mice. These results suggest that reduction of CS in donor blood cells may suppress the severity of acute GVHD after hematopoietic stem cell transplantation
    corecore