309 research outputs found

    Observation of strong electron dephasing in disordered Cu93_{93}Ge4_4Au3_3 thin films

    Full text link
    We report the observation of strong electron dephasing in a series of disordered Cu93_{93}Ge4_4Au3_3 thin films. A very short electron dephasing time possessing very weak temperature dependence around 6 K, followed by an upturn with further decrease in temperature below 4 K, is found. The upturn is progressively more pronounced in more disordered samples. Moreover, a lnTT dependent, but high-magnetic-field-insensitive, resistance rise persisting from above 10 K down to 30 mK is observed in the films. These results suggest a nonmagnetic dephasing process which is stronger than any known mechanism and may originate from the coupling of conduction electrons to dynamic defects.Comment: to appear in Phys. Rev. Let

    Local and Global Superconductivity in Bismuth

    Get PDF
    We performed magnetization M(H,T) and magnetoresistance R(T,H) measurements on powdered (grain size ~ 149 micrometers) as well as highly oriented rhombohedral (A7) bismuth (Bi) samples consisting of single crystalline blocks of size ~ 1x1 mm2 in the plane perpendicular to the trigonal c-axis. The obtained results revealed the occurrence of (1) local superconductivity in powdered samples with Tc(0) = 8.75 \pm 0.05 K, and (2) global superconductivity at Tc(0) = 7.3 \pm 0.1 K in polycrystalline Bi triggered by low-resistance Ohmic contacts with silver (Ag) normal metal. The results provide evidence that the superconductivity in Bi is localized in a tiny volume fraction, probably at intergrain or Ag/Bi interfaces. On the other hand, the occurrence of global superconductivity observed for polycrystalline Bi can be accounted for by enhancement of the superconducting order parameter phase stiffness induced by the normal metal contacts, the scenario proposed in the context of "pseudogap regime" in cuprates [E. Berg et al., PRB 78, 094509 (2008)].Comment: 12 pages including 9 figures and 1 table, Special Issue to the 80th birthday anniversary of V. G. Peschansky, Electronic Properties of Conducting System

    Topological Quantum Phase Transition in 5dd Transition Metal Oxide Na2_2IrO3_3

    Get PDF
    We predict a quantum phase transition from normal to topological insulators in the 5dd transition metal oxide Na2_2IrO3_3, where the transition can be driven by the change of the long-range hopping and trigonal crystal field terms. From the first-principles-derived tight-binding Hamiltonian we determine the phase boundary through the parity analysis. In addition, our first-principles calculations for Na2_2IrO3_3 model structures show that the interlayer distance can be an important parameter for the existence of a three-dimensional strong topological insulator phase. Na2_2IrO3_3 is suggested to be a candidate material which can have both a nontrivial topology of bands and strong electron correlations

    Rate of equilibration of a one-dimensional Wigner crystal

    Full text link
    We consider a system of one-dimensional spinless particles interacting via long-range repulsion. In the limit of strong interactions the system is a Wigner crystal, with excitations analogous to phonons in solids. In a harmonic crystal the phonons do not interact, and the system never reaches thermal equilibrium. We account for the anharmonism of the Wigner crystal and find the rate at which it approaches equilibrium. The full equilibration of the system requires umklapp scattering of phonons, resulting in exponential suppression of the equilibration rate at low temperatures.Comment: Prepared for the proceedings of the International School and Workshop on Electronic Crystals, ECRYS-201

    Introduction

    Get PDF
    corecore