35 research outputs found

    Notes on the brain and encephalization quotient of two sperm whales with a synthesis of the literature and indications of a new method of extraction

    Get PDF
    The sperm whale (Physeter macrocephalus, Linnaeus 1758) possesses the largest brain that ever existed. Relatively few authors have dealt with it and the available descriptions are heterogeneous, with only few data about brain weight or gross anatomy. In fact the central nervous system of large cetaceans is quite difficult to obtain, given the huge body size and the low frequency of strandings of recently dead individuals. Furthermore, since the skull of the sperm whale underwent an extreme transformation for the accommodation of the spermaceti organ, the cranial cavity is surrounded by thick layers of bone and thus difficult to reach under field conditions. We recently had the chance to extract the brain from two stranded sperm whales whose bodies were in good condition. In the present note we describe the main macroscopic characteristics of the sperm whale brain, including its weight and Encephalization Quotient, review the available literature, and describe a possible new approach to the removal and preservation of the organ under field conditions

    Intrabone Transplant of Cord Blood Stem Cells Establishes a Local Engraftment Store: A Functional PET/FDG Study

    Get PDF
    Background. Despite advancements in comprehension of molecular mechanisms governing bone marrow (BM) homing of hematopoietic stem cells, cord blood transplant (CBT) suffers from a slow rate of hematopoietic recovery. Intrabone (IB) injection has been proposed as a method able to improve speed of BM engraftment with respect to conventional IV protocols. However, the mechanisms underlying this benefit are largely unknown. Aim. To verify whether IB-CBT determines a local engraftment able to predict the reconstitution of recipient hematopoiesis. Design and Methods. Twenty-one patients with hematologic malignancies received IB injection into both iliac crests of 3.2±0.68 * 107/kg cord blood cells. One month following IB-CBT, PET-CT imaging was performed. Maximal standardized uptake values (SUVs) were assessed in BM of both iliac crests and in all lumbar vertebrae. Results. Maximal SUV within iliac crests was higher than in lumbar vertebrae (4.1±1.7 versus 3.2±0.7, resp., P=0.01). However, metabolic activity in these two different BM districts was significantly correlated (r=0.7, P<0.001). Moreover, FDG uptake values within the injection site closely predicted platelet recovery 100 days after IB-CBT (r=0.72, P<0.01). Conclusions. The metabolic activity of injected BM predicts the subsequent rate of hematopoietic recovery after IB-CBT, suggesting a pivotal role of the local engraftment in the reconstitution of recipient hematopoiesis

    Fetal and Early Post-Natal Mineralization of the Tympanic Bulla in Fin Whales May Reveal a Hitherto Undiscovered Evolutionary Trait

    Get PDF
    The evolution of the cetacean skeleton followed a path that differentiated this group from other terrestrial mammals about 50 million years ago [1], and debate is still going on about the relationships between Cetacea and Artiodactyla [2], [3], [4]. Some skeletal traits of the basilosaurids (the more advanced forms of Archaeocetes), such as the expansion of the peribullary air sinuses, dental modification and vertebral size uniformity [5] are maintained and further emphasized also in contemporary odontocetes and mysticetes. Using Dual-Energy X-Ray Absorptiometry here we report that the deposition of bone mineral in fetal and newborn specimens of the fin whale Balaenoptera physalus is remarkably higher in the bulla tympanica than in the adjacent basal skull or in the rest of the skeleton. Ossification of the tympanic bulla in fetal Artiodactyla (bovine, hippopotamus) is minimal, becomes sensible after birth and then progresses during growth, contrarily to the precocious mineralization that we observed in fin whales. Given the importance of the ear bones for the precise identification of phylogenetic relationship in therian evolution [6], this feature may indicate a specific evolutionary trait of fin whales and possibly other cetacean species or families. Early mineralization of the tympanic bulla allows immediate sound conduction in the aquatic medium and consequently holds potential importance for mother-calf relationship and postnatal survival

    Sometimes Sperm Whales (Physeter macrocephalus) Cannot Find Their Way Back to the High Seas: A Multidisciplinary Study on a Mass Stranding

    Get PDF
    BACKGROUND: Mass strandings of sperm whales (Physeter macrocephalus) remain peculiar and rather unexplained events, which rarely occur in the Mediterranean Sea. Solar cycles and related changes in the geomagnetic field, variations in water temperature and weather conditions, coast geographical features and human activities have been proposed as possible causes. In December 2009, a pod of seven male sperm whales stranded along the Adriatic coast of Southern Italy. This is the sixth instance from 1555 in this basin. METHODOLOGY/PRINCIPAL FINDINGS: Complete necropsies were performed on three whales whose bodies were in good condition, carrying out on sampled tissues histopathology, virology, bacteriology, parasitology, and screening of veins looking for gas emboli. Furthermore, samples for age determination, genetic studies, gastric content evaluation, stable isotopes and toxicology were taken from all the seven specimens. The animals were part of the same group and determined by genetic and photo-identification to be part of the Mediterranean population. Causes of death did not include biological agents, or the "gas and fat embolic syndrome", associated with direct sonar exposure. Environmental pollutant tissue concentrations were relatively high, in particular organochlorinated xenobiotics. Gastric content and morphologic tissue examinations showed a prolonged starvation, which likely caused, at its turn, the mobilization of lipophilic contaminants from the adipose tissue. Chemical compounds subsequently entered the blood circulation and may have impaired immune and nervous functions. CONCLUSIONS/SIGNIFICANCE: A multi-factorial cause underlying this sperm whales' mass stranding is proposed herein based upon the results of postmortem investigations as well as of the detailed analyses of the geographical and historical background. The seven sperm whales took the same "wrong way" into the Adriatic Sea, a potentially dangerous trap for Mediterranean sperm whales. Seismic surveys should be also regarded as potential co-factors, even if no evidence of direct impact has been detected

    Cetacean response to environmental and anthropogenic drivers of change: Results of a 25-year distribution study in the northwestern Mediterranean Sea

    No full text
    reserved5Marine mammals are in many situations one of the most studied component of marine ecosystems. Their habitat requirements may be used to detect and describe the impacts of changes in the environmental conditions or in the human-induced pressures affecting the area where they live. The aim of this study is to investigate the distribution patterns of the most frequent cetacean species occurring in the area of the Pelagos Sanctuary (Northwestern Mediterranean Sea) and their potential correlations with both environmental and anthropogenic drivers of changes. Two different types of data were used: sighting data from ship-board surveys and strandings data collected along the Ligurian coast by the Italian Stranding Network, spanning from 1986 to 2014. Sighting data were collected during summer surveys conducted from June to September, between 1990 and 2014 in an area of approximately 29,000km2, within the Pelagos Sanctuary for over 115,000km surveyed under favorable conditions. A total of 4,683 sightings of the five most common cetacean species were collected: 3,305 (70.5%) striped dolphins, 814 (17.3%) fin whales, 169 (3.6%) Risso's dolphins, 347 (7.4%) sperm whales and 48 (1.02%) Cuvier's beaked whales. The species time series of both encounter and stranding rates have been investigated in the light of potential drivers of changes. The results suggest that the area may be suffering from some ecosystem change which is causing the observed changes in the distribution pattern of the five species. Potential disturbance from human activities, namely fishery and maritime traffic, could not be excluded.mixedAzzellino, A.; Airoldi, S.; Lanfredi, C.; Podestà, M.; Zanardelli, M.Azzellino, Arianna; Airoldi, S.; Lanfredi, Caterina; Podestà, M.; Zanardelli, M

    Harbour porpoises, Phocoena phocoena, in the Mediterranean Sea and adjacent regions: Biogeographic relicts of the last glacial period

    No full text
    The harbour porpoise, Phocoena phocoena, is one of the best studied cetacean species owing to its common distribution along the coastal waters of the Northern Hemisphere. In European waters, strandings are common and bycatch mortalities in commercial fisheries reach alarming numbers. Lethal interactions resulting from human activities together with ongoing environmental changes raise serious concerns about population viability throughout the species’ range. These concerns foster the need to fill critical gaps in knowledge of harbour porpoise biology, including population structure, feeding ecology, habitat preference, and evolutionary history, that are critical information for planning effective management and conservation efforts. While the species is distributed fairly continuously in the North Atlantic Ocean, it becomes fragmented in the south-eastern part with isolated populations occurring along the Atlantic coasts of the Iberian Peninsula, Northwest Africa, and in the Black Sea. The latter population is separated from the Atlantic populations by the Mediterranean Sea, where the species is almost entirely absent. Understanding the evolutionary history of these populations occurring in marginal habitats holds the potential to reveal fundamental aspects of the species biology such as the factors determining the species distribution, ecological niche, and how past and recent environmental variation have shaped the current population structure. This information can be critical for understanding the future evolution of the species in consideration of ongoing environmental changes. This chapter summarizes the recent advances in our knowledge regarding the populations bordering the Mediterranean Sea with a special emphasis on their ecological and evolutionary history, which has recently been reconstructed from genetic analyses
    corecore