14 research outputs found

    Component-based methodology and development framework for virtual and augmented reality systems

    No full text
    The very recent revolutionary advancements and wide availability of the real-time 3D graphics technology results in the overwhelming and still quickly growing number of toolkits, game engines, and VR/AR frameworks, which offer very broad collections of functional features. It becomes apparent that soon the winning factor will not be related to the number of features provided, but rather to the availability of a flexible component-based process and architecture able to curb exploding complexity, supporting seamless integration, and assuring broad design and code reuse. Since the late 90's Component Based Development (CBD) is a very active area of research and development. However, most of the current efforts and component standards are strongly biased towards enterprise information management systems focusing on distributed, secure, and transactional business logic. Concerning Game/VR/AR (GVAR) system engineering domain component-orientation, although highly demanded, currently is poorly understood and still in the pioneering phase. The work presented in this thesis consists of the three main parts. The first part focuses on the systematic analysis, mapping and adaptation of the current understanding of the CBD methodology to the needs of the GVAR system engineering. The resulting GVAR specific CBD methodological template is then validated by confrontation with the set of existing GVAR system engineering solutions. Mapping to the uniform CBD semantics yields detailed taxonomy and demonstrates the evolutionary convergence of initially isolated architectural (design related), functional (system operation and mechanism related), and development (process related) patterns towards the common CBD methodological denominator. As a result, the second part proposes GVAR specific component model and the respective component framework implementation (VHD++). In context of the VHD++ component model, we study consequences of separation between content (storing) and software (computing) side components and the role of the multi-aspect- graph concept. In context of the VHD++ component framework, we specify the architecture and identify an ensemble of fundamental coordination mechanisms necessary to support and enforce the VHD++ component model. In the third part we focus on the validation of the proposed CBD methodology from the perspective of the main three actors of the CBD process (component framework developer, component developer, application composer). In particular, we study examples of concrete components, inter-component collaborations, and instances of VR/AR storytelling systems featuring various combinations of advanced virtual character simulation technologies, immersion, and interaction paradigms

    D.: Real-time virtual humans in ar sites

    No full text
    In this paper we present our work on the LIFEPLUS EU IST project. LIFEPLUS proposes an innovative 3D reconstruction of ancient frescos-paintings through the real-time revival of their fauna and flora, featuring groups of virtual animated characters with artificial life dramaturgical behaviors, in an immersive AR environment. The goal of this project is to push the limits of current Augmented Reality (AR) technologies, exploring the processes of narrative design of fictional spaces where users can experience a high degree of realistic interactive immersion. Based on a captured/real-time video of a real scene, the project is oriented in enhancing these scenes by allowing the possibility to render realistic 3D simulations of virtual characters in real-time. Although initially targeted at Cultural Heritage Centers and Sites, the paradigm is by no means limited to such subjects, but encompasses all types of future Location-Based Entertainments, Evisitor Attractions, e-Worker training schemes as well as on-set visualizations for the TV/movie industry. In this paper we provide an overview of the project and the technologies being employed and finally we present early results based on the ongoing research

    LIFEPLUS: Revival of life in ancient Pompeii

    No full text
    e-mail: [george.papagiannakis | tom.molet | nadia.thalmann | sumedha.kshirsagar

    ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR

    No full text
    et de nationalité polonaise acceptée sur proposition du jury: Prof. D. Thalmann, directeur de thès

    Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers

    No full text
    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additional risk modifiers for BRCA1 and BRCA2 may be identified from promising signals discovered in breast cancer GWAS. A total of 350 SNPs identified as candidate breast cancer risk factors (P < 1 × 10−3) in two breast cancer GWAS studies were genotyped in 3451 BRCA1 and 2006 BRCA2 mutation carriers from nine centers. Associations with breast cancer risk were assessed using Cox models weighted for penetrance. Eight SNPs in BRCA1 carriers and 12 SNPs in BRCA2 carriers, representing an enrichment over the number expected, were significantly associated with breast cancer risk (Ptrend < 0.01). The minor alleles of rs6138178 in SNRPB and rs6602595 in CAMK1D displayed the strongest associations in BRCA1 carriers (HR = 0.78, 95% CI: 0.69–0.90, Ptrend = 3.6 × 10−4 and HR = 1.25, 95% CI: 1.10–1.41, Ptrend = 4.2 × 10−4), whereas rs9393597 in LOC134997 and rs12652447 in FBXL7 showed the strongest associations in BRCA2 carriers (HR = 1.55, 95% CI: 1.25–1.92, Ptrend = 6 × 10−5 and HR = 1.37, 95% CI: 1.16–1.62, Ptrend = 1.7 × 10−4). The magnitude and direction of the associations were consistent with the original GWAS. In subsequent risk assessment studies, the loci appeared to interact multiplicatively for breast cancer risk in BRCA1 and BRCA2 carriers. Promising candidate SNPs from GWAS were identified as modifiers of breast cancer risk in BRCA1 and BRCA2 carriers. Upon further validation, these SNPs together with other genetic and environmental factors may improve breast cancer risk assessment in these populations
    corecore