61 research outputs found

    Pion-induced transport of π mesons in nuclei

    Get PDF
    A large body of data for pion-induced neutral pion continuum spectra spanning outgoing energies near 180 MeV shows no dip there that might be ascribed to internal strong absorption processes involving the formation of Δ’s. This is the same observation previously made for the charged pion continuum spectra. Calculations in an intranuclear cascade model or a cascade exciton model with free-space parameters predict such a dip for both neutral and charged pions. We explore several medium modifications to the interactions of pions with internal nucleons that are able to reproduce the data for nuclei from 7Li through Bi

    Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production

    Get PDF
    Background: The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Results: Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Conclusions: Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products

    Uji Daya Hambat Jamur Endofit Akar Bakau Achantus Terhadap Bakteri Staphylococcus Aureus Dan Escherichiae Coli

    Full text link
    : Fungi and bacteria are microbes that are classified in the general stage of Endofit. Fungi is the most isolated form of Endofit. To this point studies articulating endofit are still at a scarce stage, without a doubt the corresponding relationship between plants and organisms. Endosimbions are considered in a state between grass that grows endemic in The United States of America (truf grass) and endofit fungi, Neotyphodium SP. The purpose of these researches are to see and understand the inhibition of bacteria growth from endofit fungi that can be obtained from the roots of Mangrove Acanthus against bacteria Staphylococcus Aureus and Escherichia coli. These studies have been researched since November 2013 to January 2014 at the Biomedical Research Laboratory Faculty of Medicine University of Sam Ratulangi. The research results that were conjured from the Mangrove root type Achantus have an inhibitory effect on the test bacteria research, which are Staphylococcus Aureus and Escherichia Coli

    The development and application of bioinformatics core competencies to improve bioinformatics training and education

    Get PDF
    Bioinformatics is recognized as part of the essential knowledge base of numerous career paths in biomedical research and healthcare. However, there is little agreement in the field over what that knowledge entails or how best to provide it. These disagreements are compounded by the wide range of populations in need of bioinformatics training, with divergent prior backgrounds and intended application areas. The Curriculum Task Force of the International Society of Computational Biology (ISCB) Education Committee has sought to provide a framework for training needs and curricula in terms of a set of bioinformatics core competencies that cut across many user personas and training programs. The initial competencies developed based on surveys of employers and training programs have since been refined through a multiyear process of community engagement. This report describes the current status of the competencies and presents a series of use cases illustrating how they are being applied in diverse training contexts. These use cases are intended to demonstrate how others can make use of the competencies and engage in the process of their continuing refinement and application. The report concludes with a consideration of remaining challenges and future plans

    XUE. Molecular inventory in the inner region of an extremely irradiated Protoplanetary Disk

    Full text link
    We present the first results of the eXtreme UV Environments (XUE) James Webb Space Telescope (JWST) program, that focuses on the characterization of planet forming disks in massive star forming regions. These regions are likely representative of the environment in which most planetary systems formed. Understanding the impact of environment on planet formation is critical in order to gain insights into the diversity of the observed exoplanet populations. XUE targets 15 disks in three areas of NGC 6357, which hosts numerous massive OB stars, among which some of the most massive stars in our Galaxy. Thanks to JWST we can, for the first time, study the effect of external irradiation on the inner (<10< 10 au), terrestrial-planet forming regions of proto-planetary disks. In this study, we report on the detection of abundant water, CO, CO2_2, HCN and C2_2H2_2 in the inner few au of XUE 1, a highly irradiated disk in NGC 6357. In addition, small, partially crystalline silicate dust is present at the disk surface. The derived column densities, the oxygen-dominated gas-phase chemistry, and the presence of silicate dust are surprisingly similar to those found in inner disks located in nearby, relatively isolated low-mass star-forming regions. Our findings imply that the inner regions of highly irradiated disks can retain similar physical and chemical conditions as disks in low-mass star-forming regions, thus broadening the range of environments with similar conditions for inner disk rocky planet formation to the most extreme star-forming regions in our Galaxy.Comment: Accepted for publication in ApJ Letters. 20 pages, 7 figure

    Physics and Chemistry of Planet-Forming Disks in Extreme Radiation Environments

    Get PDF
    Our knowledge about the formation history of planetary systems is obtained by comparing the demographics of proto-planetary disks with the exoplanetary system population. Most of the disks that we have been able to characterize to date are located in nearby low-mass star forming regions. However, it is well known that most stars form in denser environments and therefore, it is questionable that the well studied population of planet forming disks is representative of those in which most exoplanets were assembled. Due to their large distances and high densities, so far it has been impossible to study the physical and chemical properties of proto-planetary disks in massive star-forming regions. We will exploit the unique resolution and sensitivity of JWST/MIRI to explore for the first time the impact of disk evaporation on the disk structure, warm disk chemistry, and dust mineralogy, all of which are important for planet formation models and exoplanet atmosphere composition. The derived physical and chemical properties will be compared to similar data of low-mass star forming regions of JWST GTO programmes
    • …
    corecore