552 research outputs found

    Green Algorithms: Quantifying the Carbon Footprint of Computation.

    Get PDF
    Climate change is profoundly affecting nearly all aspects of life on earth, including human societies, economies, and health. Various human activities are responsible for significant greenhouse gas (GHG) emissions, including data centers and other sources of large-scale computation. Although many important scientific milestones are achieved thanks to the development of high-performance computing, the resultant environmental impact is underappreciated. In this work, a methodological framework to estimate the carbon footprint of any computational task in a standardized and reliable way is presented and metrics to contextualize GHG emissions are defined. A freely available online tool, Green Algorithms (www.green-algorithms.org) is developed, which enables a user to estimate and report the carbon footprint of their computation. The tool easily integrates with computational processes as it requires minimal information and does not interfere with existing code, while also accounting for a broad range of hardware configurations. Finally, the GHG emissions of algorithms used for particle physics simulations, weather forecasts, and natural language processing are quantified. Taken together, this study develops a simple generalizable framework and freely available tool to quantify the carbon footprint of nearly any computation. Combined with recommendations to minimize unnecessary CO2 emissions, the authors hope to raise awareness and facilitate greener computation

    Known allosteric proteins have central roles in genetic disease

    Full text link
    Allostery is a form of protein regulation, where ligands that bind sites located apart from the active site can modify the activity of the protein. The molecular mechanisms of allostery have been extensively studied, because allosteric sites are less conserved than active sites, and drugs targeting them are more specific than drugs binding the active sites. Here we quantify the importance of allostery in genetic disease. We show that 1) known allosteric proteins are central in disease networks, and contribute to genetic disease and comorbidities much more than non-allosteric proteins, in many major disease types like hematopoietic diseases, cardiovascular diseases, cancers, diabetes, or diseases of the central nervous system. 2) variants from cancer genome-wide association studies are enriched near allosteric proteins, indicating their importance to polygenic traits; and 3) the importance of allosteric proteins in disease is due, at least partly, to their central positions in protein-protein interaction networks, and probably not due to their dynamical properties

    Ten simple rules to make your computing more environmentally sustainable.

    Get PDF
    Funder: Victorian Government’s Operational Infrastructure Support (OIS) programFunder: Health Data Research UKFunder: La Trobe University Postgraduate Research ScholarshipFunder: Munz Chair of Cardiovascular Prediction and Preventio

    Visualizing Chromosome Mosaicism and Detecting Ethnic Outliers by the Method of “Rare” Heterozygotes and Homozygotes (RHH)

    Get PDF
    We describe a novel approach for evaluating SNP genotypes of a genome-wide association scan to identify “ethnic outlier” subjects whose ethnicity is different or admixed compared to most other subjects in the genotyped sample set. Each ethnic outlier is detected by counting a genomic excess of “rare” heterozygotes and/or homozygotes whose frequencies are low (<1%) within genotypes of the sample set being evaluated. This method also enables simple and striking visualization of non-Caucasian chromosomal DNA segments interspersed within the chromosomes of ethnically admixed individuals. We show that this visualization of the mosaic structure of admixed human chromosomes gives results similar to another visualization method (SABER) but with much less computational time and burden. We also show that other methods for detecting ethnic outliers are enhanced by evaluating only genomic regions of visualized admixture rather than diluting outlier ancestry by evaluating the entire genome considered in aggregate. We have validated our method in the Wellcome Trust Case Control Consortium (WTCCC) study of 17,000 subjects as well as in HapMap subjects and simulated outliers of known ethnicity and admixture. The method's ability to precisely delineate chromosomal segments of non-Caucasian ethnicity has enabled us to demonstrate previously unreported non-Caucasian admixture in two HapMap Caucasian parents and in a number of WTCCC subjects. Its sensitive detection of ethnic outliers and simple visual discrimination of discrete chromosomal segments of different ethnicity implies that this method of rare heterozygotes and homozygotes (RHH) is likely to have diverse and important applications in humans and other species

    Power, false discovery rate and Winner's Curse in eQTL studies.

    Get PDF
    Investigation of the genetic architecture of gene expression traits has aided interpretation of disease and trait-associated genetic variants; however, key aspects of expression quantitative trait loci (eQTL) study design and analysis remain understudied. We used extensive, empirically driven simulations to explore eQTL study design and the performance of various analysis strategies. Across multiple testing correction methods, false discoveries of genes with eQTLs (eGenes) were substantially inflated when false discovery rate (FDR) control was applied to all tests and only appropriately controlled using hierarchical procedures. All multiple testing correction procedures had low power and inflated FDR for eGenes whose causal SNPs had small allele frequencies using small sample sizes (e.g. frequency 25%). Overestimation of eQTL effect sizes, so-called 'Winner's Curse', was common in low and moderate power settings. To address this, we developed a bootstrap method (BootstrapQTL) that led to more accurate effect size estimation. These insights provide a foundation for future eQTL studies, especially those with sampling constraints and subtly different conditions

    FastSpar: rapid and scalable correlation estimation for compositional data.

    Get PDF
    SUMMARY: A common goal of microbiome studies is the elucidation of community composition and member interactions using counts of taxonomic units extracted from sequence data. Inference of interaction networks from sparse and compositional data requires specialized statistical approaches. A popular solution is SparCC, however its performance limits the calculation of interaction networks for very high-dimensional datasets. Here we introduce FastSpar, an efficient and parallelizable implementation of the SparCC algorithm which rapidly infers correlation networks and calculates P-values using an unbiased estimator. We further demonstrate that FastSpar reduces network inference wall time by 2-3 orders of magnitude compared to SparCC. AVAILABILITY AND IMPLEMENTATION: FastSpar source code, precompiled binaries and platform packages are freely available on GitHub: github.com/scwatts/FastSpar. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Translating Research Into Practice: Speeding the Adoption of Innovative Health Care Programs

    Get PDF
    Looks at case studies of four innovative clinical programs to determine key factors influencing the diffusion and adoption of innovations in health care
    • …
    corecore