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Abstract 
Asthma is a common condition caused by immune and respiratory dysfunction, and it 
is often linked to allergy. A systems perspective may prove helpful in unravelling the 
complexity of asthma and allergy. Our aim is to give an overview of systems biology 
approaches used in allergy and asthma research. Specifically, we describe recent 
“omic”-level findings, and examine how these findings have been systematically 
integrated to generate further insight. 
 
Current research suggests that allergy is driven by genetic and epigenetic factors, in 
concert with environmental factors such as microbiome and diet, leading to early-life 
disturbance in immunological development and disruption of balance within key 
immuno-inflammatory pathways. Variation in inherited susceptibility and exposures 
causes heterogeneity in manifestations of asthma and other allergic diseases. 
Machine learning approaches are being used to explore this heterogeneity, and to 
probe the pathophysiological patterns or “endotypes” that correlate with 
subphenotypes of asthma and allergy. Mathematical models are being built based on 
genomic, transcriptomic, and proteomic data to predict or discriminate disease 
phenotypes, and to describe the biomolecular networks behind asthma. 
 
The use of systems biology in allergy and asthma research is rapidly growing, and has 
so far yielded fruitful results. However, the scale and multidisciplinary nature of this 
research means that it is accompanied by new challenges. Ultimately, it is hoped that 
systems medicine, with its integration of omics data into clinical practice, can pave the 
way to more precise, personalised and effective management of asthma. 
 

mailto:Howard.Tang@baker.edu.au


1 Introduction 
Asthma is a common but complex disease that involves immune and respiratory 
dysfunction, and it is often associated with allergy. The ongoing prevalence of asthma 
and allergy has been linked to changes in environment and lifestyle [1, 2]. But while 
we know of several genetic and environmental determinants of asthma, the potential 
interactions between these determinants remain unclear. Furthermore, asthma and 
allergy are umbrella terms that describe a spectrum of disease, with unexplained 
heterogeneity in clinical manifestations. Finally, with the development of high-
throughput technologies, we may be able to unravel this complexity, but it remains 
challenging to process, analyse and interpret the large volumes of biological data that 
emerge from these technologies. All these challenges have prompted researchers to 
search for new methods of inquiry more suited to these research problems. 
 
Systems biology is a relatively recent development that addresses the growing 
complexity of biomedical research questions. The term was coined in the 1960s to 
describe mathematical modelling of physiological systems [3]. Today it embodies 
expertise across multiple fields, including biology, mathematics, statistics, informatics 
and computer science. The “systems” community is diverse and as such there is no 
singular definition of the term “systems biology” [4]. However, it is commonly presented 
as the study of biomedical problems involving complex systems and their interactions, 
by surveying and integrating high-volume data that may cover wide spatiotemporal 
scales [3]. These “big datasets” typically originate from “omics”, fields of study 
involving high-throughput measurement of biomolecules: for instance, genomics for 
DNA, transcriptomics for RNA transcripts, and proteomics for translated proteins 
(Figure 1). Mathematical and computational expertise is then required to explore this 
high-volume data, using techniques such as dimension reduction; data- and text-
mining; modified statistical analyses that account for spatiotemporal complexity and 
multiple testing burden; machine learning; and mathematical modelling. Further 
perturbation experiments may be performed, where a biological system can be 
disrupted (e.g. via receptor antagonists or gene knockouts) to identify functionally-
relevant elements of the system [5, 6]. Therefore, systems biology is by its very nature 
multi- and inter-disciplinary.  
 
The practice of systems biology follows two approaches: an unbiased, hypothesis-free 
data-driven approach, where few a priori assumptions are made and models are learnt 
from the data; and a hypothesis-driven approach, where model design and analysis 
are guided by previous experiments and expert knowledge [7]. The data-driven 
approach is becoming increasingly popular as it can uncover new knowledge on 
emergent behaviour from complex data, and can be used to generate new 
hypotheses. In turn, hypothesis-driven studies can also be used to test those very 
hypotheses. For instance, data-driven approaches allow us to determine new 
subphenotypes of asthma, while hypothesis-driven studies will allow us to test the 
relationship of these subphenotypes to existing paradigms of disease (T2-driven vs. 
non-T2). Systems biology can also be dichotomised into top-down versus bottom-up 
approaches, to describe the direction of enquiry in decreasing (big-to-small, long-to-
short, system-to-components) or increasing spatiotemporal scales (small-to-big etc.), 
respectively (Figure 1) [8, 9]. 
 



On the surface, systems biology seems antithetical to the “reductionist paradigm” of 
old. However, systems-based approaches can produce new insights on how to 
proceed with reductionist experiments, and vice versa. Also, there are strengths and 
weaknesses attached to each; while reductionist methods can over-simplify problems, 
their tests are more appropriate in contexts such as causal inference. Nonetheless, 
systems approaches are becoming indispensable to biomedical research; they allow 
us to better understand disease phenomena, and form the basis for precision 
medicine, helping us improve the screening and management of disease. 
 
Asthma and allergy, as biomedical problems, are well-suited to systems approaches. 
These diseases have complex pathogenesis, with multiple tiers of biological 
complexity, polygenicity and gene-environment interactions. Systems approaches 
used in asthma and allergy research include: (1) discovery of disease associations 
within each omic field; (2) identification of relationships within and across omic fields; 
(3) examination of heterogeneity of disease states and phenotypes, typically by 
exploring the multidimensional structure of omic data via clustering or classification; 
(4) investigation of inter-connections between system components in omic data by 
network analysis; and (5) mathematical modelling to model physiological systems or 
disease states, and to generate and test predictions (Figure 2). Though the final 
approach is closest to the original formulation of systems biology, our review will take 
a high-level look at all approaches, with a focus on the first three. 
 

2 Overview of omic findings in allergy and asthma 
We begin our examination from bottom up – from the molecular level of genomes and 
transcriptomes, to the macroscopic level of observable phenotypes. We offer high-
level summaries of recent findings at each level of profiling. As allergy-related 
mechanisms comprise a significant portion of asthma pathogenesis, much of the 
discussion will involve findings related to allergic diseases at large. However, there 
will also be some exploration of the omics of non-allergic asthma. 
 

2.1 Genomics 
Asthma and allergy are highly-heritable, with estimated heritability ranging from 35 to 
95% [10]. In the last half-century, the quantitation of genetic variation has progressed 
from rough “ballpark” measurements such as restriction fragment length 
polymorphisms (RFLP), to precise single-nucleotide variants or polymorphisms 
(SNV/SNP) interrogated en masse using DNA microarrays. More recently, there has 
been a move towards whole exome (WES) and whole genome sequencing (WGS). 
The complexity of genetic data analysis has also grown in parallel, from candidate 
gene studies, to genome-wide linkage studies within pedigrees, to genome-wide 
association analyses (GWAS) [11]. The GWAS approach is based on one-by-one 
association testing of thousands to millions of genetic variants across the genome with 
a phenotype of interest (e.g. asthma vs. non-asthma status), with subsequent 
statistical adjustments for the multiple testing burden. The logic of adjusting for multiple 
testing is fundamental to many other omic-wide analyses, and is a key reason for the 
need for large sample sizes when dealing with such analysis.  
 



However, while some older associations from linkage and candidate gene studies 
have been replicated in GWAS (e.g. IL13/IL4 and IL4R), most have not. There is low 
concordance of significant results between these older studies and GWAS. These 
suggest that (1) older findings may be plagued by false positives; (2) each approach 
may have its own use: positional candidates from linkage studies may flag variants 
determining intra-family disease risk, while GWAS flag variants determining 
population-wide risk; and (3) rarer or weaker gene associations may need larger 
sample sizes in GWAS to achieve stringent multiple testing thresholds. The latter is 
exacerbated by the difficulty of precise phenotyping in large population samples. 
However, the prevailing view in the human genetics community is that linkage and 
candidate gene studies of old were hampered by limitations in methodology and 
assumptions and frequently did not replicate in independent samples, thus many 
have been discounted in favour of those provided by GWAS [12]. 
 
In the last 10 years, GWAS have identified loci shared across multiple allergic 
phenotypes, including asthma, allergic rhinitis/hayfever, atopic dermatitis/eczema 
and food allergy (Table). These likely represent genetic contributors to general 
allergy, and include: the HLA locus, specifically HLA-DQ/DRB1, HLA-DQA1/2 and 
HLA-B/C (6p21.32-33); C11orf30/LRRC32 (11q13.5); IL13/RAD50 (5q31.1); 
IL1RL1/IL18R1 (2q12.1); and TSLP/WDR36 (5q22.1) [11, 13-15]. Some of these 
have plausible biological underpinnings linked to immune function; biomolecules 
such as IL13, IL4, IL33 and TSLP are related to the “T2” immune response of Type 2 
helper T cells (Th2) and innate lymphoid cells (ILC2), and these are classically 
implicated in allergy. The HLA region encodes major histocompatibility complex 
(MHC) class II molecules responsible for antigen presentation. Other associated 
genes remain uncertain in terms of pathophysiology (e.g. WDR36, CLEC16A), and 
require further investigation.  
 
Due to frequent comorbidity of asthma with other allergic diseases, there is difficulty 
in discerning asthma-specific loci. Many loci previously thought to be unique to asthma 
[15] have now been found across multiple allergic diseases [16]. However, there are 
some loci that do appear to act specifically for certain asthma phenotypes. In 
particular, ORMDL3/GSDMB/LRRC3C (17q21.1) is linked to childhood-onset asthma 
[17-19]. Some loci (e.g. TLR1/TLR6, ADAD1/IL2) may be linked to Th17-related 
mechanisms of disease (Table). Several studies and reviews have explored loci for 
asthma sub-phenotypes (e.g. aspirin-mediated and occupational asthma) and in 
relation to other respiratory traits (e.g. lung function, chronic obstructive pulmonary 
disease (COPD), and viral respiratory infections) [20-24], however these results have 
been inconsistent. Lately, there has been a focus on loci with ethnicity-specific effects 
– most of the aforementioned loci were identified primarily in European cohorts, and 
newer studies have begun exploring non-European populations. For instance, 
PYHIN1 is significantly associated with asthma, but only in individuals of African 
ancestry [18]. There is also an increasing focus on using admixture to map risk loci 
[10].  
 
Subsequent to these findings, significant loci and their molecular products have been 
targeted via numerous pharmacological approaches. Prior to the GWAS era, 
numerous anti-IgE (omalizumab), anti-IL5 (mepolizumab), anti-IL13 (lebrikizumab), 
anti-IL4R (dupilmab), and anti-IL2RA (daclizumab) antibodies [25-28] had been trialled 
with varying degrees of success. Following GWAS discovery of new loci, other 



therapies (anti-IL33, IL6R, TSLP, etc.) have been tested, again with modest results 
[28] (Table). Such “biologics” are currently reserved for asthma resistant to 
conventional forms of treatment [28, 29]. It is probable that certain biologics (e.g. anti-
T2 cytokine therapies) are only effective in individuals for whom their asthma is driven 
by specific mechanisms (e.g. T2 and not T1 or Th17/ILC3). It is also possible that 
varying efficacy may depend on patient genetics and asthma subphenotype. Indeed, 
GWAS for responsiveness to asthma therapy with β2-agonist bronchodilators, 
leukotriene modifiers, and steroids [30, 31] have identified loci distinct from disease-
susceptibility loci. However, there have so far been few pharmacogenomic studies for 
the reverse: directly exploring the effects of GWAS-derived disease risk variants on 
treatment efficacy. Furthermore, many existing studies have so far been limited by 
lack of replication or inconsistent results. It remains a challenge to apply 
pharmacogenetic findings in practice, and they have yet to make a significant impact 
on current treatment and management. 
 
Lately there has been a push for risk scores based on genome-wide summary 
statistics. Despite the large number of novel associations discovered using GWAS, 
these collectively explain only a small proportion of the total heritability of asthma and 
allergy. The use of significant SNPs as a predictive tool for disease is often limited 
[32]. The existing criteria for genome-wide significance may not be sensitive for so-
called “mid-hanging fruit” [33]: loci that are not genome-wide significant but still have 
an incremental effect on the phenotype. Recently, alternative strategies such as 
genomic or polygenic risk scores (PRS) have been employed to account for this 
missing signal. These use summary statistics from existing large-scale GWAS to 
generate additive scores from either a genome-wide assortment of SNPs, or from a 
selection of highly-predictive SNPs. These have shown promise as predictive or risk-
stratifying tools for other chronic polygenic diseases such as cardiovascular disease 
[32], but in asthma and allergy research, existing PRS have so far been limited to small 
subsets of genome-wide significant SNPs. Belsky et al [34] derived a PRS based on 
17 SNPs from an asthma GWAS [17], pruned by significance and LD R2 threshold – 
this score was predictive for earlier asthma onset, allergy, reduced lung function, and 
risk of childhood asthma becoming persistent into adulthood. Arabkhazaeli et al [35] 
developed a similar score for childhood allergy using 10 SNPs from a GWAS for adult 
allergy [36]. These methods, while interesting, may be less predictive than models that 
use a broader genome-wide selection of thousands to millions of SNPs, accounting 
for the known polygenic architectures of the diseases. For example, Lehto et al used 
a genome-wide PRS, but for affective traits, to identify possible shared genetic 
influences between asthma and depression [37]. It remains to be seen whether such 
findings replicate across multiple studies, and whether PRS can be used to reliably 
capture disease pathophysiology. 

2.2 Transcriptomics 
The transcriptome represents the entire repertoire of genes expressed in an organism 
or cell. Mirroring the developments in genomics, there has been a move from 
investigation of single-gene transcripts via traditional methods (e.g. Northern blotting), 
to genome-wide methods involving oligonucleotide microarrays, and most recently to 
RNA sequencing (RNA-seq, which involves reverse transcription to cDNA followed by 
deep sequencing) [38]. Transcriptomes may be determined by aligning RNA-seq 
reads to transcripts annotated in a reference genome, or assembling transcripts de 
novo, followed by quantification based on abundance of reads per transcript. Unlike 



the genome, the transcriptome varies across tissues and cell types, and changes 
dynamically during development and in response to external stimuli. Common tissue 
sources for transcriptomics include blood with or without cell sorting; bronchial 
epithelium, smooth muscle, or sputum cells for asthma; nasal epithelium for allergic 
rhinitis; and skin for atopic dermatitis. Different cell types may feature different 
associations, and this provides insight into how various genes contribute to the many 
manifestations of allergy. 
 
Recent studies of allergy have identified, across multiple tissue types, differential 
expression of genes involved in innate and adaptive immunity, inflammatory and repair 
responses, and epithelial integrity. Cytokines (T2-related and others), chemokines and 
their receptors, host defense proteins (defensins), protease inhibitors (SERPINs) and 
other multifunctional regulatory proteins (S100 family) are differentially-expressed in 
allergic diseases. SERPINs control various immune and inflammatory processes, for 
instance by inhibiting neutrophil proteases (elastase, cathepsin G) and fibrinolytic 
enzymes (plasminogen activators). S100 proteins commonly serve as damage-
associated molecular patterns (DAMPs), signals of cell stress or injury. As such, both 
SERPIN and S100 family proteins likely represent downstream sequelae of the 
immunoinflammatory responses typically seen in asthma and allergic diseases. 
Multiple studies have identified such changes for atopic dermatitis, in both lesional and 
non-lesional skin samples [39-42]; and in airway epithelial or sputum samples of 
asthma [43-47]. For asthma, further analyses have linked certain transcriptomic 
profiles to inflammatory subtypes of asthma: eosinophilic or T2-driven airway 
inflammation has been associated with elevated airway expression of periostin 
(POSTN), CLCA1, SERPINB2, CLC, CPA3 and DNASE1L3 [43, 44, 46]; while 
neutrophilic or Th17-linked inflammation has instead been linked to expression of 
IL1B, ALPL, DEFB4B, CXCR2, and other chemokines [43, 47], an expression profile 
that bears some similarities with psoriatic skin lesions [47]. Differences in gene 
expression across inflammatory phenotypes are also reflected in blood and sputum 
transcriptomics [47], and show some promise in being exploitable as putative 
biomarkers for disease subtypes [43]. Furthermore, there is evidence that T1 and 
Th17/ILC3 pathways act in partial opposition to each other, and while T2-mediated 
eosinophilic inflammation is responsive to steroid treatment [44, 48], it may also lead 
to enhanced Th17 activity and subsequent risk of neutrophilic inflammation [49]. 
Finally, although it may be enticing to describe T2-mediated eosinophilic inflammation 
as “allergic”, and T1 or Th17-mediated neutrophilic inflammation as “non-allergic”, 
other inflammatory profiles (paucigranulocytic, mixed) also exist – thus complicating 
the narrative. Nonetheless, associating gene expression profiles with specific 
inflammatory phenotypes may provide the next step towards improving precision in 
managing asthma and allergic disease. 
 
It is notable that few of the aforementioned differentially-expressed genes were 
identified as genome-wide significant loci in previous GWAS for asthma. As discussed 
above, this is likely the result of differential gene expression being indicative of 
inflammatory pathology downstream of the genetics. This is supported by the 
observation that several expression quantitative trait loci (eQTLs) are located around 
T2-related loci (IL4R, TSLP, IL13), and that unsupervised gene module analysis of 
airway transcriptomics has revealed consolidation of certain expressed genes into T1-
driven versus T2-driven modules [46]. eQTL analyses are similar to GWAS, in that 
eQTLs are essentially SNPs with genome-wide significant effects on expression of 



nearby genes, for instance by altering the regulatory region of those genes (cis-
eQTLs) [50], or altering a transcription factor for a distant gene (trans-eQTLs). 
Nowadays it is uncommon to see GWAS without an accompanying eQTL analysis in 
related tissue types. Significant loci from asthma and allergy GWAS that overlap with 
eQTLs in specific tissue types (usually whole blood) are shown in the Table. A 
limitation of whole blood eQTL analyses is that it is not clear whether the eQTL is 
active across all blood cell types, or only within specific blood or immune cells. 
 
More recently, single-cell transcriptomics have come to the fore. Scientists can now 
isolate single cells (e.g. micromanipulation with capillary pipettes, flow-activated cell 
sorting or FACs, microfluidics) [51], then investigate transcriptional differences 
between individual cells within a sample, rather than assuming homogeneous 
expression and averaging transcription across the sample. Single-cell RNA-seq 
(scRNA-seq) presents new opportunities to explore the inner workings of the human 
immune system – whether it be exploring trajectories of certain types of immune cells 
ordered by pseudotime; mapping immune cell lineages, or investigating B and T cell 
repertoires [52-54]. Of particular future interest is the potential harnessing of scRNA-
seq to identify drug or vaccine targets for modifying B and T cell responses [53]. Most 
recently, using scRNA-seq, Croote et al identified that certain IgE antibodies of peanut-
allergic individuals converged upon identical gene rearrangements [55]. Chiang et al 
identified that a subset of Th2 cells (“Th2+”) in peanut-allergic individuals 
demonstrated functions beyond IgE isotype switching, such as expression of cytokines 
that contributed to local tissue inflammation (IL-3, CSF2), as well as resistance to 
attempted suppression by Treg cells [56]. Widespread adoption of scRNA-seq is 
currently limited by high cost, high computational demand of data processing, and 
inherent challenges in subsequent statistical analyses – specifically in relation to 
sample normalisation, batch effects and other sources of bias [51, 54]. However, it is 
anticipated that these obstacles will be gradually resolved with time. There is ongoing 
development of statistical and systems-based approaches designed to deal with such 
data, especially measures of trajectory and pseudotime [57]. 
 
 

2.3 Epigenomics 
The epigenome is the set of heritable biochemical modifications that change gene 
expression, but are not coded in the DNA sequence. Epigenetics functions as a bridge 
between genome and transcriptome, providing mechanisms by which the micro- or 
macroenvironment can influence gene expression within each cell; and by which 
transgeneration inheritance can occur after initial exposure to an epigenome-
modifying environment [58, 59]. Epigenetic signals include: (1) DNA methylation at 
CpG islands, which silences expression of adjacent genes; (2) histone modifications 
(acetylation, methylation, and others), whose effects vary depending on type and 
position of modification; and (3) non-coding RNA such as microRNA (miRNA), which 
can silence genes by binding or degrading complementary mRNA [60]. Together, 
these epigenetic markers cause changes in accessibility of a local DNA segment to 
transcription or regulatory factors. 
 
Low and high-throughput detection methods exist for each type of epigenetic signal. 
Methylation-sensitive restriction fingerprinting and microarrays for detecting 5-
methylcytosine have been used to describe the DNA “methylome”. Genome-wide 



histone modifications can be detected using chromatin immunoprecipitation (ChIP). 
Next-generation sequencing options also exist (miRNA-seq, DNAse-seq, FAIRE-seq, 
ChIP-seq, 3C-seq), which function by isolating DNA fragments that are accessible or 
inaccessible to a factor of interest, and sequencing those fragments to determine their 
identity [9]. Epigenome-wide association studies (EWAS) can then be performed to 
identify epigenetic features for a given trait or disease. Finally, like the transcriptome, 
the epigenome is responsive to external stimuli and varies across cell types, and most 
epigenomic studies of allergy have so far examined blood, skin, or airway samples. 
 
There is evidence that development and maturation of T cell lineages is partly 
determined by epigenetic changes [58]. Th2 differentiation is driven by STAT6 and 
GATA3, resulting in epigenetic changes (DNA methylation, histone acetylation) that 
induce Th2-related (IL4/IL13), and suppress Th1-related (TBET, IFNG, IL-12/STAT4 
pathway) expression; conversely, Th1 differentiation is driven by STAT4 and TBET to 
elicit the opposite epigenetic changes; finally, Treg differentiation is driven by STAT5, 
with associated epigenetic changes in FOXP3 and the IL10 locus [58, 60]. Given the 
role of epigenetics in T cell development, it is plausible that allergic disease may be 
linked to altered epigenetics affecting this process. Epigenetic signals have been 
observed across multiple tissue types in allergy. Changes to DNA methylation have 
been noted in loci related to Th2 function and T cell development (IL4R, TSLP, IFNG, 
FOXP3, STAT5A) [59, 61-65], while other significant loci control antigen presentation, 
eosinophil activity, lipid metabolism, and mitochondrial function [66, 67]. The 
relationship between histone modifications and allergy or asthma is less clear. Some 
studies have shown changes to global histone acetylation with reduced deacetylating-
to-acetylating (HDAC-to-HAT) activity in asthmatic lungs compared to normal [68-70]; 
while others suggest that HDAC inhibition can improve the suppressive function of 
Tregs [71]. Similarly, certain miRNAs are known to influence allergy risk. For example, 
Okoye et al. observed that miR-155 and miR-146 may be critical in determining T cell 
differentiation towards Th2 versus Th1/Th17 [72]. Other relevant miRNAs are 
reviewed elsewhere [73, 74]. There remains too many knowledge gaps to allow us to 
fully use epigenetics to our advantage in managing asthma and allergy. However, 
investigation of the full compendium of miRNA species is progressing rapidly, and may 
lead to new targeted therapeutics in the future. 
 
An important aspect of epigenetics is the link to environmental exposures. Because 
the development of the immune system begins in utero and continues through infancy, 
environmental modifiers of epigenetic signals may have a stronger impact earlier in 
life. Experimental and observational studies show that maternal exposures during 
pregnancy and exposures during early childhood can modify the child’s epigenome. 
These exposures include changes to diet, macro- and micro-nutrition, farm 
environments, infections and microbes, animals, allergens, medications, pollutants, 
tobacco smoke, and even maternal stress [60, 75, 76]. In particular, folate and Vitamin 
B12 are methyl donors that have a global impact on DNA methylation [60]. Finally, 
genome associations have been identified for methylation patterns as quantitative 
traits (meQTLs). These include the ORMDL3/GSDMB locus, where a SNP behaves 
as both an eQTL and a meQTL [77], and others [66, 78, 79]. All these findings illustrate 
that certain perinatal exposures can act through genetics and epigenetics to influence 
disease risk. 



2.4 The microbiome 
The microbiota is the community of microbes, including commensals and pathogens, 
that reside within a host or environment, while the microbiome is the genomic content 
that represents the microbiota. The “microbiota hypothesis”, a modern re-iteration of 
the hygiene hypothesis, suggests that perinatal microbial exposure is vital to proper 
development of immune functions, especially of tolerance [80-82]. Microbial 
exposures may modify allergy susceptibility by initiating different trajectories of 
immune development and function [75]. Epigenetic changes may also be involved in 
this process, although the exact nature of these changes remains unclear. 
 
The primary interfaces for host-microbe interactions are the epithelial surfaces 
exposed to the external environment – in the skin, respiratory, and gastrointestinal 
tracts – so most studies on allergy microbiomes involve sampling at one of these sites 
directly (biopsy or surface samples) or indirectly (faecal or sputum samples). The gut 
is home to gut-associated lymphoid tissue (GALT), and its microbiome can influence 
disease at other mucosal surfaces, such as the respiratory tract [83, 84]. The 
respiratory microbiome may also exert a direct influence on local inflammatory 
processes leading to asthma development [85]. The environmental microbiome may 
drive restructuring of host microbiomes, or modify allergy risk by other means; this 
may be particularly relevant in relation to the protective effect of farming environments 
[75]. Description of the microbiome relies mostly on quantification of DNA sequences 
encoding the 16S ribosomal RNA (rRNA) gene, which is common to all bacteria but 
contains variable regions used to differentiate taxa. The gene sequence is amplified 
using PCR and then examined using gel electrophoresis, terminal RFLP, microarrays, 
or sequencing. Recently there has been a transition to deep metagenomic 
sequencing, which captures the genomes of all organisms present in a sample, not 
just the 16S rRNA gene, and can be used to infer both taxonomic composition and 
function of the microbial community.  
 
Microbiome studies are complicated by the fact that host microbiomes can change 
with age, season, time of day, site sampled on the host’s body, and geography [86, 
87]. However, a number of consistent findings have been established for asthma and 
allergy. Features of the gut microbiome associated with allergy include early-life 
reduction in microbial diversity; reduced populations of Bifidobacteria, Lactobacilli and 
Bacteroidetes; and increased coliforms and specific Firmicutes (Staphylococci, 
Enterococci) [83, 84, 88]. Reversing the above changes, for instance by oral 
administration of certain Lactobacillus and Bifidobacterium species, may offer some 
protection against both the initial development of allergy and further exacerbations of 
atopic disease [80]. Within the airway microbiome, asthma development, symptoms 
and exacerbation have all been associated with increased Proteobacteria populations 
(especially Haemophilus, Moraxella, Streptococcus and Neisseria spp.), and reduced 
Bacteroidetes and Fusobacteria commensals [80, 81, 84, 85, 89]. Remarkably, these 
associations begin during infancy: the detection of asthma-related bacteria in the first 
few months of life has been associated with developing allergic asthma by primary 
school age [81, 83]. Though it is unclear whether microbial changes represent a cause 
or effect of underlying immune dysfunction, there is evidence of altered gut and airway 
microbial communities preceding allergic sensitisation [85, 90, 91]. Ultimately, these 
findings suggest two independent processes at work: microbiota, especially of the gut, 
exerting systemic effects on immune maturation; and microbiota causing local 



inflammatory processes at the sites they inhabit, including those associated with 
asthma in the respiratory tract.  
 
Other recent studies have uncovered the potential role for non-bacterial microbes, 
including viruses such as human rhinovirus and respiratory syncytial virus (RSV), in 
causing early childhood wheeze and bronchiolitis that often precedes full-blown 
asthma [85, 92, 93]. There is evidence for the role of rhinovirus (RV), specifically RV-
C, in causing severe respiratory illnesses that are associated with increased asthma 
risk later in life. This is further supported by evidence that a genetic locus significant 
for childhood asthma, CDHR3, modifies the binding and replication of RV-C, and 
hence infection susceptibility [94, 95]. The pathophysiology behind the viral 
associations may be related to chronic airway injury due to recurrent infection, possibly 
interacting synergistically with allergic mechanisms, to elicit and maintain sustained 
inflammation [92]. Microbe-specific systems such as the virome and the (fungal) 
mycobiome may also be helpful towards understanding asthma pathogenesis [75, 97]. 
Microbiome modification and control of respiratory infection risk (e.g. through vaccines 
or pre/probiotic supplementation) are possible avenues for future investigation. 

2.5 The exposome and environmental exposures 
Researchers have frequently explored the relationship between environmental 
exposures and disease. The “exposome” builds on this idea by encapsulating all 
environmental exposures that contribute to human health and disease. The 
environmental microbiome, for instance, is just one type of exposure; the host 
microbiome itself can be considered an exposure when describing microbes residing 
on the skin, or on luminal surfaces of hollow viscera exposed to the external 
environment. It is difficult to measure all exposures, let alone on a high-throughput 
scale, and there are other challenges related to correlation, confounding, and 
interaction amongst different exposures [98]. Instead, most studies have so far 
quantified a limited set of relevant exposures via questionnaires and environmental 
sampling. North et al. is one of the first studies to adopt an exposomic approach to 
examine multiple types of exposures simultaneously, in their search for associations 
with childhood wheeze [99]. 
 
The environment can contribute to asthma and allergy pathogenesis in many ways. 
As mentioned in the epigenomics section, these include mechanisms acting through 
diet and nutrition, exposures to pets and animals, allergens, pollution, tobacco smoke 
and other chemical exposures. For some of these, it is possible to measure and 
perform high-throughput analyses on proteomic and metabolomic data. Diet is one 
example: a protective effect against allergy has been reported for polyunsaturated 
fatty acids (PUFAs) found in fish oil, and for their metabolites [100]. Higher proportions 
of certain very-long-chain PUFAs in plasma during childhood has been linked to 
reduced allergic disease in later adolescence [101]. There has been slow adoption of 
omics-level analyses in food [102], and it remains controversial whether food and 
dietary supplements have any impact on allergy or asthma risk (given the innumerable 
potential confounders). However, in the future, it may be possible to scan the contents 
of an individual’s diet in a high-throughput manner, construct a “foodome” (combining 
lipidomics and metabolomics), and search for de novo associations with disease. 
Airborne pollutants may also be explored in a similar manner. 
 



Environmental allergens can themselves be investigated by multiple omic approaches, 
in relation to quantity of exposure, geography of exposure, and allergenicity of protein 
structures. For instance, studies have identified that low environmental load of allergen 
can be a risk factor for disease [103, 104]. Timing and route of allergen exposure may 
also be relevant: early introduction of solids, including peanuts, may be protective, but 
only within a specific time window [105]. Also, early exposure to peanut allergen 
through the skin may promote sensitisation, while exposure through the gut may 
promote tolerance [106]. Other studies have overlaid geographical maps of exposure 
with maps of disease, as has been done for traffic-related air pollution and asthma 
[107]. Finally, it is still not clear why allergens behave as allergens – or more 
specifically whether there is anything inherent in the molecular structure of putative 
allergens that confer allergenicity. The term “allergome” is typically used to describe 
the proteomics-based discovery of allergenic protein structures within individual 
allergens – discussion of this is deferred to the proteomics section. 
 
Occupational and chemical exposures comprise a less common, but well-known 
source of irritants and allergens that cause asthmatic disease. In occupational health, 
the term “reactive airways dysfunction syndrome” (RADS) is often used to refer to 
bronchial reactivity without an initial latency or sensitisation period [108]. Examples of 
culprit chemicals include isocyanates, acid anhydrides, azodicarbonamide, dyes, 
enzymes, and metals [109]. Potential mechanisms of disease are highly-variable, and 
may involve type I (allergic) hypersensitivity vs. non-allergic/irritant, or Type IV (T cell-
mediated) mechanisms; “inducers” vs. “inciters”; dermal vs. respiratory sensitisers; 
and low molecular weight (LMW, hapten-like) vs. high molecular weight (HMW) 
allergens [108]. It is likely that many culprits drive disease through mixed mechanisms. 
An important note here is that a current lack of evidence for IgE-mediated mechanisms 
with a particular chemical trigger does not rule out allergy to that chemical as a cause 
– limitations still currently exist in the engineering of appropriate detection methods for 
chemical-specific IgE [110].  
 
As alluded to previously, environmental exposures can act through interactions with 
host microbiome to modify disease risk [75, 83, 84]. Maternal and perinatal exposure 
to rural environments confers some protection, possibly due to contact with microbial 
products such as lipopolysaccharide (LPS), greater diversity in microbial exposure, or 
environmental modification of host microbiota. Caesarean deliveries and perinatal use 
of antibiotics may increase risk for allergy, possibly by disrupting neonatal microbial 
colonisation. The protective effect of oral probiotics with Lactobacilli and 
Bifidobacterium spp. has been reported, as noted previously, and they may also 
provide cross-organ protection, reducing the incidence and severity of respiratory 
infections [84]. The use of dietary fibre in prebiotics, with subsequent fermentation into 
short-chain fatty acids (SCFAs), may protect from allergy via TLR and GPCR signalling 
or epigenetic modifications [80, 81]. Vitamin D has potential immune and microbiome-
modifying effects, and Vitamin D deficiency is a suspected risk factor for allergy [111, 
112]. Breastmilk contains immunoactive molecules and may alter gut microbiota 
composition [80]. Altogether, these findings offer a glimpse into how multiple 
environmental exposures may interact in a complex fashion to elicit disease. 

2.6 Proteomics, metabolomics, and lipidomics 
The proteome is the repertoire of proteins produced by cells or tissues, reflecting the 
molecular effectors and metabolic consequences of cell function. Common proteomic 



technologies can be grouped into antibody-based (ELISA), peak-profiling mass 
spectrometry (MS)-based (“fingerprinting”), gel-MS based (1D/2DG, 2D-DIGE), and 
LC-MS-based methods [113]. The general approach is to perform coarse separation 
of digested proteins into “bands” or “spots”, and then further investigate each spot by 
MS. The MS steps are often done in tandem (MS/MS) to achieve higher resolution. 
The information gained from MS can then be used to identify the peptide, or construct 
its amino acid sequence. Sources of proteomic samples include sites of pathology 
such as the airway, in the form of cellular or fluid content from bronchoalveolar lavage 
(BAL), induced sputum, biopsies, or in vitro cell cultures; or it may involve the usual 
blood or urine sample [114]. An accessible type of specimen unique to asthma 
research is exhaled breath condensate (EBC), which provides information on volatile 
compounds released from the airway. 
 
In relation to asthma and allergy research, proteomic changes often depict non-
specific pathology, as in a general elevated inflammatory state, as well as underlying 
pathological mechanisms. Therefore, recent findings in proteomics mostly mirror 
transcriptomic changes, in that they reflect altered functions in immunity, inflammation 
and anti-protease activity: affected proteins include defensins, α-1 antitrypsin, α-2 
macroglobulin, SERPINs, S100-family proteins, apolipoproteins and complement 
proteins [113-116]. Of particular note is a recent study by Schofield et al, which 
combined sputum transcriptomic and proteomics with airway histology and clinical 
features [117]. They found that eosinophilic phenotypes were associated with 
increased blood periostin and sputum haptoglobin, while neutrophilic phenotypes were 
associated with increased S100A9 and MMP9. Interestingly, few recent studies have 
identified proteome-wide significant changes to T2-related cytokines, although 
associations have been found within low-throughput in vivo studies in the past [118]. 
It is plausible that, being upstream of signalling cascades, these T2 cytokines are less 
apparent in proteome-wide analyses, where significant findings tend to be more 
dominated by downstream proteins that have been amplified via the cascades. 
 
Another important contribution of proteomics to allergy research is allergen detection 
and discovery [119]. Recent studies have investigated a compendium of epitopes for 
aeroallergens such as house dust mite [120-122] and plant pollen [123-125], and for 
food allergens in seafood and processed foods [119]; these have served both to 
confirm existing epitopes and to identify new ones. Findings from these studies can 
be applied to nonclinical settings, such as food processing and safety [119]. 
 
Metabolomics is the systems-level study of metabolites – the non-peptide 
macromolecules representing the substrates and end-products of cellular activity. The 
two main technologies of measurement used in metabolomics are nuclear magnetic 
resonance (NMR) – which provides a spectral “fingerprint” of a system’s metabolite 
constituents – and mass spectrometry (MS). Like proteomics, most metabolomic 
studies focus on samples of blood serum, EBC and urine from asthmatic patients [126-
128]. Lipidomics is a subset of metabolomics specifically dealing with lipid molecules, 
and lipidomic studies have shown that allergic disease is typically associated with 
elevation of arachidonic acid metabolites belonging to the LOX pathway, such as 
leukotrienes [129, 130]. Metabolomic associations with asthma involve immune and 
inflammatory functions, oxidative stress and hypoxia, cellular energy homeostasis, 
and lipid metabolism pathways [127]. These associations seem to reflect general 
biological stress or inflammatory pathology, rather than specificity for allergy or 



asthma. However, predictive and discrimination models based on metabolomic 
findings have shown some promise [127]. Ultimately, as was the case for 
transcriptomics, proteomics and metabolomics are being used to identify potential 
biomarkers to screen for asthma and stratify into asthma subphenotypes. Also, in line 
with developments towards integrating multiple omics: proteomic, metabolomic and 
lipidomic methods may be applied not just to host samples but also to environmental 
samples. 

2.7 The phenome and physiome 
Phenomics is a broad term encompassing all physical or biochemical traits 
(phenotypes), observable in cells or individuals, that reflect states of disease or health 
(“physiome”). In the case of allergy and asthma, possible phenotypes include cell 
types based on morphology and response (immunophenotyping); clinical biomarkers, 
such as antibody assays and cell counts; and the extensive physical manifestations of 
disease, embodied in clinical history, symptoms and signs, and investigation results. 
These traits may be quantified and described in detail, though not necessarily using 
high-throughput technologies. Phenotypic traits of interest may also include non-
disease states, such as clinical remission, and traits that vary with age. Integration 
with other omics-based datasets, and incorporation of time scales into analyses, may 
yield further insight as to how such resilience against asthmatic disease is conferred. 
 
Phenome-wide association analyses, where large sets of traits are screened for 
enrichment of allergy-related genetic loci [131, 132], have been performed in the past, 
but have yet to gain widespread popularity. Phenomes and phenotypes can also be 
analysed by machine learning, whether it be comparison of known phenotypes (via 
supervised classification) or construction of new phenotypes from omic or non-omic 
data (via unsupervised cluster analysis). This will be discussed in further detail later. 
 
The immunome is a subset of the physiome that is highly-relevant to allergy, and 
where high-throughput technologies play a major role. Immunomics broadly describes 
the systemic quantification of immune function by examining immune cell populations 
and expression of immune mediators. It may use immunoglobulin [133-135] and 
cytokine (proteomic or transcriptomic) arrays [136, 137] to quantify immune responses 
such as sensitisation, in vivo or in vitro. It can also involve leukocyte 
immunophenotyping and high-dimensional or mass cytometry [138-141]. The 
immunome is complex and varies dramatically by sampled immune cell type, tissue or 
organ, age, and timing of sampling, especially before and after sensitisation. Using 
these types of data, a number of recent studies have begun exploring the “core 
immune signatures” of newborn infants and adults alike [142-144]. Although it is well-
known that allergy is a T2-driven phenomenon, it is still not clear how all the 
components interact to generate disease, nor is it clear how heterogeneity in disease 
or health is explained by immunome heterogeneity. Furthermore, the non-allergic 
contributions of asthma are not well-understood, and it is unclear how T2 and non-T2 
(particularly T1 and Th17/ILC3) mechanisms interact to generate the spectrum of 
disease. Future studies may be able to shed light on this.  
 
One major aspect of human physiology that has a known impact on asthma risk and 
progression is sex. There are clear differences between males and females in terms 
of the development and physiology of the immune [145] and respiratory systems [146]. 
During early childhood, males have a higher incidence of asthma or wheezing illness 



than females; this switches during and post-adolescence [147]. Pregnancy in females 
can often exacerbate asthma symptoms, with partial resolution post-partum. It is likely 
that hormonal changes during these life phases influence these changes in disease 
risk. Current evidence suggests that ovarian hormones and oestrogen-mediated 
signalling promotes both Th2-related and Th17-related inflammation, while 
testosterone is protective against Th2-mediated inflammation [147]. While existing 
studies already account for sex and gender differences as an important covariate or 
cofactor, future studies may further explore sex interactions with immunomics – in 
particular, investigating how sex hormones modify the function of both adaptive and 
innate immune cells. 

3 Integration of omics data 
Following our overview of the omics, we now discuss common techniques used to 
integrate and interpret omics data in allergy and asthma research. 

3.1 Exploring intra- and inter-omic relations 
To understand disease pathogenesis, it is natural to compare findings across different 
omics, and construct a multi-omic model of pathophysiology that links these various 
elements together. This may be a simple sequential model of causality, or a complex 
network of interacting components. Many studies on omic associations with allergy 
and asthma also search for inter and intra-omic relationships. Relationships can take 
the form of direct associations, where one entity behaves as a trait for another; or an 
interactive effect between two entities in relation to a third entity as the trait of interest. 
The study of these relationships is the crux of modern systems biology. 
 
Genomics, being the most well-studied system in allergy and asthma, features 
extensively in intra-omic and inter-omic analyses. GWAS can be found not only for 
clinical phenotypes (e.g. presence of allergic disease) as traits, but also for expression 
of transcripts (eQTL analyses), epigenetic markers (meQTLs), and intermediate 
phenotypes such as microbial exposures and immunomes. Recently, there has been 
a concerted move towards integrative genomics, and genetic effects on gene 
expression are a pervasive component of modern association studies – in the form of 
mandatory genome-wide eQTL analyses or targeted measurements of gene 
transcripts [74]. Also coming into vogue is the use of Mendellian randomisation, a 
technique which uses genomic information as instruments to infer causal links 
between one trait or phenomenon and another, based on the assumption that allelic 
genotypes are randomly assigned as they are passed from parent to offspring [148]. 
The traits being linked may themselves be related to gene loci or expressed genes 
[149].  
 
Analyses for interactive effects with other omics also feature heavily in allergy 
genomics. It is unlikely that genetic and environmental factors act independently in 
conferring risk, so modern genomic studies often include interaction terms with 
exposure variables. Scientists have explored interaction effects on asthma 
susceptibility between genetics and exposures such as air pollution and tobacco 
smoke [150, 151]. Another example is the impact of allergen exposure and genetics 
on immune cell gene expression [152]. Interaction analyses also extend beyond 
environmental effects. Gene-ethnicity interaction has been investigated via admixture 
mapping [10]. Genetic-epigenetic interactions have been reported; some genome-



wide significant loci (e.g. IL4R) may interact with nearby epigenetic signals to alter 
disease risk [65]. While investigation of gene-gene interaction (epistasis) is of intense 
interest, the overwhelming number of active genes in the human genome means that 
such analyses have a large statistical burden and hence remain difficult. Therefore 
gene-gene interaction studies are so far limited to a few selected genes or SNPs. 
Polygenic risk scores tend to employ additive linear models that do not reflect epistatic 
effects, and it remains a challenge to integrate these in an accurate manner. Finally, 
interactive effects may be explored by means beyond using interaction terms in 
regression models: for example, eQTL-weighted GWAS have been reported [153]. 
 
Given the strong links between environmental factors and asthma, interactions with 
environment exposures have been explored to a degree. Importantly, prominent gene-
environmental interactions have been observed with glutathione S-transferase 
variants impacting on susceptibility to environmental sources of oxidative stress, such 
as air pollutants [154], passive exposure to tobacco smoke [155] and isocyanate [156, 
157]; as well as subsequent asthmatic disease [154, 158]. Similar interactions may 
also exist for respiratory infections, given that infection and the subsequent 
immunoinflammatory reaction are also sources of oxidative stress. In addition, 
microbial and pathogen exposures have been linked to differential gene expression; 
for instance, viral infections are associated with changes to airway epithelial 
transcriptomics in asthma [159, 160]. Unsurprisingly, the exposome and microbiome 
have also been linked to epigenetic changes, and the various exposures are intricately 
entwined in complex interactions. For instance, a recent study has looked at the 
interaction between air pollution and the allergenicity of ragweed pollen [161]. Another 
recent study has identified that maternal phthalate exposure may promote allergy in 
subsequent generations via epigenetics [162].Other examples concerning 
environmental interactions with diet and microbiome have already been discussed. 
 
Finally, a common application of integrative omics is the use of gene ontology analysis 
to annotate discovered genes from genomic, transcriptomic, or epigenomic analyses 
[163]. This makes use of a pre-curated database of functional annotations for known 
genes, based on existing literature, to segregate discovered genes into groups or 
pathways with shared functions. An example is the Gene Ontology Consortium [164]. 
These databases of functional annotations convey phenomic information, where cell 
phenotypes, functions and behaviours are organised into discrete categories. In doing 
so, one aims to condense diverse genome-wide findings into concise summaries of 
biological function that may be easier to interpret when building a conceptual model of 
pathophysiology. Similar annotation analyses exist for proteomics [165, 166]. A 
limitation of such techniques is that the annotations may not always be certain, 
reliable, or up-to-date, and can often be vague or uninformative. 
 
Inter- and intra-omic relationships may be explored either by low-throughput pairings, 
or by high-throughput assessment of larger networks [167, 168]. However, especially 
with the latter, it may be difficult to account for non-causal correlations or confounders. 
For example, despite the hygiene hypothesis, low socioeconomic status and 
impoverished environments remain risk factors for the development and severity of 
asthma [84]. This may be due to confounding factors that coexist with poverty, 
including urbanised environments, exposure to allergen and pollutants, dietary intake, 
and access to health care. There is no doubt that modifiers of allergy risk may co-
occur together, but whether this represents a causal link is another matter. Methods 



such as Mendelian randomisation (MR, described previously) may be used to 
disentangle this, but one must be wary of violating the numerous assumptions that 
underlie MR. Also, given the high dimensionality of inter- and intra-omic analyses, one 
may instead use dimension reduction and machine learning to identify potentially 
robust signals of relevance to pathogenesis. 

3.2 Machine learning, dimension reduction, and clustering 
Machine learning is a set of methods that use computing to learn and formulate 
solutions from supplied data, with or without explicit human input. It is already in 
common use with various biomedical and ecological applications [169-171]; however, 
it is particularly useful when dealing with complex, high-throughput, and 
multidimensional data—especially in cases where pre-existing human knowledge may 
be unavailable or insufficient to decipher the data. Machine learning approaches 
typically involve iteration – where an algorithm repeatedly refines a model based on 
observed data until a metric of model quality (e.g. objective / cost / loss function) 
satisfies a particular threshold. Applications of machine learning in biomedicine 
typically involve the exploration of data structure, or generating predictive or 
explanatory models of biological systems. 
 
Cluster analysis and classification are methods used to subset data samples or 
individuals into different groups or categories, thus giving a summary of data structure. 
Such methods typically employ machine learning at the most fundamental level: for 
instance, hierarchical clustering is an iterative process where the “objective function” 
would be the minimisation of within-cluster similarity and/or maximisation of between-
cluster dissimilarity. There is usually a subtle distinction between clustering and 
classification: cluster analysis is a data-driven approach, where omic data is used to 
generate clusters in an unsupervised fashion. The clusters can then be interpreted for 
hypothesis generation and testing. On the other hand, classification is a hypothesis-
driven approach: known phenotypes or pre-curated categories are used to determine 
a model of classification based on training data, which can then be applied to other 
datasets, or examined to look for further biological associations (Figure 3). 
 
A drawback of clustering and classification (as for other applications of machine 
learning) is that there is little consensus or standardisation of optimal methods, 
although there are certainly favoured approaches for each problem. They may also be 
intimidating for the regular clinician or biologist to adopt, and choice of method often 
depends on a specialist understanding of nuances in the data. As an example: when 
performing cluster analysis, many decisions need to be made prior to and during the 
procedure. This includes how to deal with missing data; select the variables or 
“features” for clustering; scale or normalise features; choose the algorithm to do the 
actual clustering; pick the number of clusters; control for overfitting; and validate or 
replicate results [172]. It is not necessarily clear what the best choice is for any of 
these decision points. 
 
In exploring the correlation structure and confounders in a dataset, one can use 
principal components analysis (PCA), or similar methods, to transform the dataset into 
uncorrelated variables or “principal components”. In doing so, one can observe which 
of the original variables describe similar information (i.e. are highly-correlated with 
each other); and by plotting principal components, one can visualise the data in a way 
that maximises variability between samples or variables. By condensing our data to a 



limited selection of principal components, we can reduce the number of dimensions 
and simplify the input features for subsequent clustering or classification [173]. 
Feature selection can be limited to a single omic entity, or cover multiple omics 
simultaneously, depending on the question asked. 
 
Cluster analysis involves separating samples in a dataset into discrete groups 
(clusters) based on what can be learnt from data structure, without specifying training 
examples for each group [172, 174]. Its objective is to minimise intra-group and 
maximise inter-group differences. Measures of difference or dissimilarity may be 
distance- or correlation-based. Common clustering techniques include hierarchical 
clustering, medoid-based methods, and latent variable modelling. Cluster analysis 
allows one to identify homogeneous groups within a heterogeneous dataset, and 
simplify analyses to comparisons between clusters rather than across entire cohorts. 
Clustering can also expose confounders without explicit adjustment for correlation, 
especially if clustering is “guided” by co-segregating omic variables. Using molecular 
omic-based features, cluster analysis may allow us to determine endotypes – 
subtypes of disease or health states – by common biomolecular interactions and 
pathophysiology [175]. These can be compared with known phenotypes to explore 
how variation in pathophysiological mechanisms are linked to variation in disease 
manifestations. Cluster analysis can also be applied to phenome data to deal with 
heterogeneity in phenotypes. Using “cleaner” sub-phenotypes for association 
analyses may improve the power and specificity of subsequent findings. 
 
Classification methods determine a statistical model or decision-making algorithm that 
allocates individuals of a training dataset into known groups (classes) [172]. The learnt 
model or algorithm can then be applied to other test datasets for classification into 
classes. Methods include regression analysis, discriminant analysis, support vector 
machines, and partitioning or decision trees. The objective of classification varies with 
the method, but mainly involves achieving the “best fit” – minimising differences 
between predicted and actual class allocation for the training dataset – without 
compromising generalisability to external datasets. Classification can be used to 
design diagnostic or risk stratification algorithms from an omic dataset. Each sample 
is labelled as one of a predefined set of phenotypes (e.g. allergic versus non-allergic 
asthma, eosinophilic vs. neutrophilic, severe versus non-severe), then the algorithm 
seeks biomolecular or clinicophysiological features that best define the phenotype 
[176, 177]. In the absence of predefined phenotypes, one may combine both clustering 
and classification: generate clusters based on a training dataset, then devise a 
classifier which can classify test datasets into the discovered clusters. 
 
Both cluster analysis and classification have been used extensively in asthma 
research. Major findings from such analyses include the discovery and 
characterisation of different subsets of childhood and adult asthma. Childhood wheeze 
has been categorised, by both traditional and machine-learning approaches, into 
persistent atopic wheeze of early onset, transient remitting viral wheeze, and a mixed 
atopic/non-atopic phenotype of variable onset [178-180]. Atopic wheeze appears to 
be characterised by Th2 activation, early sensitisation to allergens, greater severity of 
respiratory disease, greater likelihood of persistence to full-fledged allergic asthma, 
and concurrence of other atopic diseases. In terms of adult asthma, there are subtypes 
based on lung function [181], as well as atopic, non-atopic, mixed and other 
phenotypes [175]. Eosinophilic, neutrophilic and paucigranulocytic airway 



inflammation can also be distinguished from sputum samples, and accompanying 
transcriptomic, proteomic and immunomic data can provide some insight into 
underlying pathophysiology for each phenotype [43, 176, 182-184]. Neutrophilic, 
Th1/Th17-dominant, and steroid-resistant asthma tend to co-occur together, 
suggesting a common endotype. Asthma, COPD and mixed asthma/COPD 
phenotypes have also been explored [185]. Other studies have looked at allergy 
phenotypes related to degree and pattern of allergic sensitisation (mono- versus poly-
sensitised; early versus late-sensitised) [186, 187].  
 
Clustering can be applied to other omic data, outside of phenotype data. In Teo et al 
[85], hierarchical clustering was used to generate the microbiome profile groups 
(MPGs) which categorised the infant nasopharyngeal microbiome into discrete 
clusters based on microbial abundance. This facilitated simpler analysis and 
interpretation of what was otherwise complex data. 
 
Some researchers have identified that membership within asthma clusters or 
subphenotypes change or transition with age [188, 189]. This latter point also 
highlights an ongoing challenge of subphenotyping asthma: the fact these phenotypes 
or clusters are inherently unstable, and may change with age, complicates post-hoc 
analyses. To address this, clustering can be applied in a time-dependent manner: 
recent work by several research groups have used techniques (e.g. latent transition 
analysis) that leverage longitudinal data to model transition probabilities between 
clusters at different timepoints [189-191]. Such methods reveal which asthma 
phenotypes are inherently stable or unstable; at a cursory glance, it appears that early-
life atopy tends to correlate with entrenched asthma in later life [191, 192]. Our own 
laboratory recently employed a method of cluster analysis to derive trajectories 
representing distinct patterns of evolving composition in the nasopharyngeal 
microbiome, and subsequently related these to asthma outcomes (Lang et al, Tang et 
al, to be published).  

3.3 Network analysis 
Network analysis is the use of networks to model and investigate systems. Networks 
are represented by graphs consisting of nodes and edges, where nodes represent 
entities (e.g. biomolecule) and the edges between nodes indicate relationships 
between entities (e.g. correlation, transition probability, molecular interaction). Edges 
can be undirected (symmetrical) or directed (asymmetrical). Many types of network 
analyses involve use of machine learning to generate a best-fitting network for a given 
dataset.  
 
Networks are used to discover and visualise how different components in a system 
relate to each other, whether they be abstract relations or actual molecular 
interactions. Bayesian network analysis involves probabilistic modelling of a network, 
where edges are directed and annotated with a transition probability from one node to 
another. This technique has been used frequently in asthma research, for instance to 
identify candidate genes or SNPs associated with a bronchodilator response [193]; to 
quantify interactions between measured pathophysiological variables related to 
asthma and allergy [194]; and to describe gene regulatory networks using gene 
expression and GWAS data [195, 196]. 
 



Gene co-expression networks can be generated based on correlation between 
expression levels of different genes. High correlation reflects genes that are co-
expressed and hence may be co-regulated or share a common biochemical pathway. 
Nodes represent genes, while edges represent correlation between them. 
Furthermore, edges can be weighted by degree of correlation, as in weighted gene 
co-expression network analysis (WGCNA); and highly-connected or proximate 
subgraphs can be interpreted as gene modules of functional importance. WGCNA has 
been used to identify co-expression networks underlying helper T cell responses to 
house dust mite stimulation [197]; transcription networks in whole blood of asthmatics 
[198]; an IgE-signalling gene network associated with blood lipids [168]; and co-
methylation models that reflect asthma endotypes [77]. Modena et al identified that 
adults with severe asthma have differential airway expression of gene modules 
corresponding to various biological functions, including epithelial growth and repair, 
T1/T2 inflammation, neuronal and cilia functions [46]. In particular, certain subsets of 
severe asthmatics exhibited high expression of a T1-associated gene module, 
featuring core genes STAT1 and PARP9 as well as other notable downstream proteins 
(e.g. IFN-g induced chemokines).  
 
Other applications of network analysis exist. For example, Pillai et al. used bipartite 
network analysis of cytokine expression to sort patients into distinct endotypes [199]. 
Hinks et al. constructed a network of asthmatic individuals based on similarity in 
clinicophysiological parameters, then used topological data analysis (TDA) to assign 
nodes into clusters [194]. 
 
Finally, the term “network analysis” has also been used to describe the application of 
genomic, transcriptomic or proteomic data to existing networks stored in databases, 
specifically protein-protein interaction (PPI) networks, or networks representing 
biomolecular pathways. This is often done to generate subsets of the original 
interaction networks, which are then examined for biological interpretation [200, 201]. 
Network databases concerning other omics may be used to achieve a similar purpose 
(e.g. Ingenuity Pathway Analysis, innateDB) [197, 202]. 
 

3.4 Mathematical modelling and prediction 
The ultimate goal of integrative analyses is to generate models that reliably explain 
biological phenomena. At the simplest level, one can use identified omic associations 
as biomarkers; generate a model consisting of the strongest biomarkers; and test the 
model on an external dataset. Many examples of such an approach exist in the 
literature [128, 203, 204]. At a deeper level, one can aggregate multiple biomarkers 
(potentially omic-wide) into a risk score, such as a genomic risk score [34]. The 
classification and network models discussed previously are themselves mathematical 
models that cover multiple omic domains and are testable on external datasets. In 
some of these applications, the models represent abstract attributions of risk, and 
strive to be useful as clinical predictive tools, rather than to be accurate or 
comprehensive representations of pathophysiology. 
 
Another approach is to observe the consequences of perturbing a system, and infer 
normal function based on the results [6]. These perturbations may include gene 
knockouts in animal or cell models [205]; neutralising antibodies or receptor 
antagonists to observe subsequent disruption of function [206, 207]; or simple 



observation of distribution of perturbations amongst cases versus controls in an 
observational study (e.g. genome-wide association studies). Perturbations may be 
deliberate and controlled, targeting single genes or molecules; or they may be 
randomised and wholesale, in keeping with the “systems” philosophy (e.g. random 
mutagenesis studies in animal models). While such approaches have been employed 
extensively in biological research, there have been few in-depth explorations of the 
consequences of perturbation at multi-omic levels, at least in asthma research. 
Research groups with access to multi-omic datasets may be well-positioned to begin 
exploring such questions. 
 
Based on existing knowledge from biomarker and perturbation studies, one may be 
able to generate in silico mathematical models to describe a complete biological 
subsystem in terms of components, interactions and functions; and then describe their 
perturbation during disease. Modelling biological systems in such a manner is 
challenging, as there are still many unknowns about its components. However, this 
has not stopped researchers from trying: for example, Hofer et al. modelled the IL4-
dependent activation of GATA3 transcription in T2 development [208]. Multi-scale 
approaches have been used to describe multiple levels of biological function, from 
intracellular molecular processes, to cell-to-cell communication, to organ-level 
function. For instance, Lauzon et al. formulated a model of airway 
hyperresponsiveness that accounted for actin-myosin mechanics; calcium signalling 
in airway smooth muscle (ASM) regulation; mechanical forces of airway narrowing; 
and time-dependent distribution of ASM contraction throughout the lung [209] Such 
approaches require knowledge of techniques that use differential equations and state 
diagrams; a review of these approaches is provided elsewhere [210]. However, since 
such models are usually generated with data from in vitro systems or animal models, 
it remains an ongoing challenge to test their relevance to in vivo human systems, and 
they should therefore be treated with caution [211]. Upcoming projects such as the 
Human Cell Atlas [212] seek to address some of these challenges, bridging the gap 
between cell biology and clinical medicine.  
 

4 Pitfalls and challenges 
Many challenges remain for systems biology. There are methodological challenges 
associated with statistical power, even in large consortia. This is due to the sheer scale 
of omic data, and the number of possible omic-omic comparisons or interactions. Next-
generation technologies are becoming cheaper and more efficient, but the amount of 
data they generate will continue to pose a statistical challenge. Furthermore, the 
theory behind statistical and modelling methods still lags behind, and there is currently 
little consensus on the optimal systems-level pipelines (e.g. RNA-seq). Although 
research groups have recently been paying more attention to measurable 
environmental exposures in terms of their impact on biological systems [99], the lack 
of environmental data – and the uncertainty about which exposures actually matter – 
hinders examination of gene-environment interactions. Finally, even if we have a 
sufficiently powered sample, there is a so-called “Faustian bargain” [213], where large 
sample sizes introduce heterogeneity in cases and controls, thus obscuring findings. 
There is also a similar problem of the “Winner’s Curse” [214], where significant results 
in a ome-wide study tend to exhibit larger effect sizes than what they are in reality. 
 



Machine learning has been the go-to tool to handle phenotypic heterogeneity [215]. 
However, many biologists and clinicians remain sceptical of it, with concerns about its 
“hype” or fad-like status, its opaque “black box” nature, and the perceived lack of clear, 
consistent or immediately-applicable results [216]. Moore et al [181] were one of the 
first groups to apply unsupervised cluster analysis to an adult asthma cohort, and 
identify distinct clusters. While the clusters themselves proved useful in describing 
disease risk and severity profiles in the discovery population, subsequent studies 
attempting to replicate these clusters in other cohorts have had mixed results [217]. 
Numerous other studies have identified different sets of clusters based on different 
parameters and populations [218]. Results of machine learning methods may vary 
significantly depending on the nature of the input data, in terms of its quality; its 
relevance to the disease being studied; its depth (resolution of data – categorical vs. 
continuous) and breadth (single vs. multiple biological domains); and its balance (one 
domain prioritised over another vs. all treated equally). The variability in research 
outcomes may suggest to some that machine learning methods are ultimately 
unreliable; but the field is still growing, and we argue that it simply illustrates the 
immense complexity of biomedical systems – complexity that will remain impenetrable 
if we limit ourselves to traditional expert-driven approaches. Unsupervised machine 
learning can serve as a springboard for future hypotheses: recently, Lazic et al [219] 
used unsupervised latent class analysis to identify a high-risk multiple-sensitised 
subgroup, whose pathophysiological origins in early life may be worth exploring in 
further detail with hypothesis-driven approaches. Ultimately, a balance of human 
expertise and machine learning will be necessary to make the right decisions about 
data input and interpretation, and to transform big data into biomedically-relevant 
results. 
 
Systems biology is multidisciplinary, and with this comes another challenge: 
communication and collaboration between the various disciplines. There is often a 
conflict of priorities: a clinician might be more interested in diagnosis, treatment and 
prognosis; an immunologist in the pathophysiology of allergy and asthma; the 
biostatistician in making sure that the statistics and modelling are sound; and the 
bioinformatician in generating clean data and writing problem-free code. There may 
be residual scepticism amongst some biologists or clinicians who perceive systems 
approaches as “data fishing” [9]. There is some evidence to suggest that 
multidisciplinary research projects have greater difficulty in getting funded or making 
a strong scientific impact [220], and this may reflect the challenge of balancing multiple 
priorities and conveying different perspectives to a broad audience, more so than the 
actual quality of the writing or research. 
 
Multiple reviews have highlighted the ongoing inaccessibility of systems approaches 
to many biologists and clinicians, and have recommended the creation of “biologist-
friendly” tools [138, 210, 221]. While this may indeed be helpful for common or simple 
analyses, there remains an ongoing need for specialist input in developing and using 
new tools. Tools are only useful if applied correctly, and a research group should not 
eschew specialist statistics or informatics input, simply to save costs or “to keep things 
simple”. Also, as one can clearly observe, systems biology is itself very diverse, 
covering multiple avenues of inquiry. Subspecialties will likely emerge within the field, 
each focussing on specific methodologies and their applications. It is likely that there 
will be a demand for specialists and generalists alike, and the movement of tertiary 



institutions towards incorporating mathematics, statistics, and informatics in 
undergraduate biomedical courses is certainly a welcome one. 
 

5 Future directions and concluding statements 
The recent developments in systems biology exemplify the global drive towards 
systems medicine [187, 222], and more broadly, “P4 medicine” – predictive, 
preventative, personalised and participatory [223]. Our ultimate objective is to achieve 
a critical level of biomedical understanding that permits development of precise and 
personalised interventions for individual patients. The employment of systems biology 
in asthma research represents the first step towards achieving this goal. Omics-level 
research allows us to hone in on the myriad of pathological changes that contribute 
incrementally to disease, and to attempt reversal of these changes by addressing new 
therapeutic targets (Table). Omics-omics integration may enable us to connect these 
changes and visualise how they operate in each individual patient. Another important 
contribution of systems biology is the ongoing clarification of the hygiene/microbial 
hypothesis; the interaction between genetics and environment; and the future 
possibility of environmental and host microbiota modification to manage or prevent 
disease. Therapies may be tailored to individual patients depending on their 
underlying endotype or pattern of pathophysiology (e.g. anti-T2 biologic treatment for 
allergic asthma; combined anti-Th2/Th17 treatment for steroid-resistant disease), 
though the exact implementation of such precision medicine remains a work-in-
progress. 
 
Worldwide, there has been a push by many groups to implement systems medicine, 
charting a path from wet lab to dry lab to bedside. Large consortia, such as MeDALL 
in Europe [187] and STELAR from the UK [215], have been established specifically to 
record and integrate multi-omic data related to allergy and asthma, and conduct well-
powered systems-based analyses. Other smaller groups are also involved in similar 
research via frequent cross-collaborations: these include CAS (Australia) [85], U-
BIOPRED (European) [224], COAST (US) [93], COPSAC (Danish) [14], MAAS (UK) 
[186], SARP (US) [182] and others. In the modern age of systems biology, 
collaboration and data sharing is virtually mandatory when it comes to uncovering 
complex associations such as gene-environmental interactions. 
 
Overall, systems biology has yielded fruitful outcomes in asthma research, and 
promises to deliver more in the future. At the moment, we are still a far way off from 
truly personalised medicine – being able to predict with reasonable accuracy the 
disease or prognosis of an individual based on well-sampled data. However, we can 
only expect the field to grow exponentially in the years to come. 
 
  



Figures 

 
Figure 1: “Omics” in allergy, and their interrelationships 
 
A depiction of the various “omics” that can be found in allergy and asthma research. 
Lines connecting the “omics” represent various biological relationships, associations 
or interactions that may exist. In systems biology, bottom-up approaches progress 
from the molecular scale to the macroscopic scale, and vice versa for top-down 
approaches. 
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Figure 2: Overview of systems-based approaches to tackling research questions in 
allergy and asthma 
 
The various ways in which systems biology of allergy can be interrogated: (A) 
discovery of disease associations within each omic field of enquiry; (B) identification 
of relations within and across omics; (C) examination of the heterogeneity of disease 
states or phenotypes, typically by exploring the structure of omic data via clustering or 
classification; (D) investigation of inter-connections between system components in 
omic data by network analysis; and (E) mathematical modelling to model physiological 
systems or disease states, and to generate and test predictions. Diagrams are for 
illustrative purposes only and do not convey real data. Figure 2A shows a simplified 
Manhattan plot, with the vertical axis representing negative log p-value (statistical 
significance), horizontal axis representing chromosome and position, and each point 
representing a SNP; the red line is the adjusted p-value threshold, and significant loci 
are marked by “peaks” extending beyond the red line.  
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Figure 3: Data-driven versus hypothesis-driven machine learning for integration of 
omic data 
 
(A) Data-driven (unsupervised) cluster analysis to generate de novo groupings; 
reflective of shared pathophysiology (“endotypes”); (B) hypothesis-driven (supervised) 
classification to compare known phenotypes or endotypes, and to allow prediction of 
phenotype/endotype membership for additional samples. Diagrams are for illustrative 
purposes only and do not convey real data. 
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Selected genomic associations Location
Role of gene, and possible contributions to 
pathophysiology Phenotypes sharing same locus SNPs as eQTLs? Citations Use in clinical/public health applications Citations

Shared with allergic diseases GWAS catalog p<5e-08
Vicente 
2017

RERE 1p36.23 Transcription factor regulating cell survival and apoptosis
Allergic rhinitis, atopic 
dermatitis Various tissues

Zhu 2018 
Nat Genet No current applications

FLG 1q21.3

Filaggrin, intermediate filament-associated protein in 
epidermis; null mutations associated with impaired skin 
barrier promoting allergen sensitisation Atopic dermatitis

Various 
epithelia incl. 
airway, skin

Soliai 2019, 
Cole 2014

Trial of targeted FLG variant screening in 
African Americans; occasionally measured 
in treatment trials for eczema medications Polcari 2014

IL6R 1q21.3

Receptor subunit for IL6, involved in immune cell growth 
and differentiation; variants possibly affect allergy via 
balance of membrane vs. soluble IL6R Atopic dermatitis

Whole blood, T 
cells

Esparza-
Gordillo 
2013, 
Westra 
2013, 
McGowan 
2019

Sirukumab (anti-IL6) trial for severe 
asthma proposed but withdrawn; 
Tocilizumab (anti-IL6R) trial for asthma 
ongoing

ClinicalTrial
s.gov, 
anzctr.org.a
u

FCER1G 1q23.3

Gamma chain of IgE receptor (FCER1); variants may 
affect expression levels of FCER1 and influence 
activation of mast cells and basophils Allergic rhinitis Whole blood Jansen 2017

Omalizumab (anti-IgE) used in severe 
allergic asthma; reduced response in non-
allergic asthma; analysis for 
pharmacogenetic interactions not yet 
performed

Tabatabaia
n 2018

TLR1/TLR6/TLR10 4p14

Pathogen recognition (esp. of bacterial lipoproteins), 
activation of innate immunity; variants may affect 
balance of subsequent Th2/Th17 activation Allergic rhinitis

TLR1: various 
tissues GTEX portal

Conflicting effects of TLR 
agonists/antagonists in animal models Zakeri 2018

ADAD1/IL2/IL21 4q27

IL2: produced by T cells in response to antigen; required 
for proliferation of T (esp. Th1) and B cells, regulatory T 
cells and residency of memory cells; role of variants 
unclear Allergic rhinitis IL2: Nil known

Trial of low dose IL2 in birch pollen allergy 
under way

ClinicalTrial
s.gov

IL7R 5p3.2

Alpha chain of receptor for IL7 and TSLP; involved in VDJ 
recombination during lymphocyte development, 
mediates T cell-driven autoimmunity; variant may affect 
IL7/TSLP activity and subsequent inflammation

Allergic rhinitis, atopic 
dermatitis Whole blood

NESDA 
eQTL 
catalog See entry on TSLP

TSLP/SLC25A46 5q22.1

TSLP: induces T cell-attracting chemokines and promotes 
Th2 responses in allergy; variants affect potential for Th2 
driven inflammation

Grass sensitisation, allergic 
rhinitis Whole blood

Zhernakova 
2017

Tezepelumab (TSLP antagonist) shows 
efficacy in severe asthma; TSLP used as 
biomarker for asthma severity and 
treatment response Corren 2017

WDR36 5q22.1
involved in regulation of cell cycle, signal transduction, 
apoptosis. Role of variant unclear.

Allergic sensitisation, allergic 
rhinitis Whole blood Yao 2017 No current applications

IL13/TH2LCRR/RAD50 5q31.1

IL13: produced by activated Th2 cells, involved in B cell 
maturation and differentiation, IgE isotype switching; 
variants likely affect Th2 activity and allergic 
inflammation in mucosal epithelia 

Allergic rhinitis, atopic 
dermatitis Testis GTEX portal

Various anti-IL13 treatments (e.g. 
Lebrikizumab, Tralokinumab, Dectrekumab) 
have been trialed for allergic disease, with 
varying success; see also Dupilmab and 
entry on IL4R

ClinicalTrial
s.gov

HLA-DQ/DRB1, HLA-DQA1/2, HLA-
B/C (6p21.32-33) 6p21.32-33

Cell-surface proteins responsible for adaptive immune 
regulation via antigen presentation; various conflicting 
associations complicated by high linkage disequilibrium 
and ethnicity-specific effects; other specific 
polymorphisms relate to specific allergens (e.g. 
drug/food)

Grass sensitisation, allergic 
rhinitis, atopic dermatitis

Class II MHC: 
Whole blood, 
blood cells

Vicente 
2017

Possible consistent link with HLA-DRB1 
alleles and allergic asthma; otherwise 
establishing clear links between haplotype 
and disease remains a challenge

Kontakioti 
2014

BACH2 6q15

Transcription regulatory coordinating NFkB signalling 
and MAFK-related transcription, apoptotic response to 
oxidative stress, essential for T/B cells; in mice, analog 
shown to regulate IL4 amplification loop and Th2 
response Allergic rhinitis Pancreas GTEX portal No current applications

IL33/GTF3AP1 9p24.1

IL33: involved in maturation of Th2 cells, activation of 
mast cells, basophils, eosinophils, and NK cells; variants 
may affect IL33-ST2 interaction and modify degree of 
Th2 response Allergic rhinitis IL33: Nil known

Multiple trials of various anti-IL33 Ab (e.g. 
REGN3500) for allergic diseases currently 
in progress

Takatori 
2018, 
ClinicalTrial
s.gov

IL2RA/IL15RA 10p15.1
Alpha chain of receptor for IL2; involved in regulation of 
regulatory T cells Atopic dermatitis

IL2RA: Spleen, 
various tissues

GTEX 
portal, 
McGowan 
2019

Pre-GWAS trial of daclizumab (anti-IL2RA 
Ab) demonstrated some benefit for 
moderate-severe asthma; otherwise, no 
current applications Busse 2008

C11orf30/EMSY/LRRC32 11q13.5

C11orf30/EMSY: transcriptional repressor, and part of H3 
methyltransferase complex, interacting with BRCA2 
(DNA repair); variants have possible effects on skin 
barrier integrity (Elias 2019)

Grass sensitisation, allergic 
rhinitis, atopic dermatitis, food 
allergy

C11orf30/EMSY: 
Thyroid GTEX portal No current applications

STAT6 12q13.3

Transcription factor with central role in IL-4-mediated 
responses, differentiation of Th2 cells and IgE class-
switching; exact variant effects unclear, but likely modify 
Th2 response and hence propensity for allergy Allergic sensitisation Nil known

Used in some trials as biomarker to 
measure Th2 activity; past pre-GWAS 
animal studies involve STAT6 modulators 
and asthma-related traits

ClinicalTrial
s.gov, 
Miklossy 
2013

SMAD3 15q22.33

Signal transducer and trasnriptional modulators, 
activated by TGF-b, inhibits tissue healing; variants may 
influence airway inflammation and remodelling Allergic rhinitis Thyroid GTEX portal No current applications

CLEC16A 16p13.13

Regulator of mitophagy and mitochondrial health; 
associated with autoimmune conditions; regulate NK cell 
function; role of variants unclear

Allergic rhinitis, atopic 
dermatitis Testis, lung GTEX portal No current applications

ORMDL3/GSDMB/LRRC3C/ZPBP2 17q21.1

ORMDL3: sphingolipid biosynthesis regulator; GSDMB: 
regulate apoptosis in epithelial cells; both may regulate 
epithelial surface integrity, airway remodelling and 
responsiveness, esp. in early childhood asthma (Stein 
2018)

Allergic rhinitis, childhood-onset 
asthma

ORMDL3: CD8 T 
cells; GSDMB: 
whole blood, 
lung, others

Kasela 
2017, 
Zhernakova 
2017, GTEX 
portal

Used in some trials as biomarker of 
interest

ClinicalTrial
s.gov

Found in asthma only

CD247 1q24.2

Zeta chain of T cell receptor-CD3 complex; involved 
signal transduction, T cell differentiation and adaptive 
immunity

Nil known; possibly shared with 
autoimmune diseases Whole blood

Zhernakova 
2017 No current applications

ADORA1 1q32.1
Adenosine receptor, involved in cAMP signalling 
pathway, inhibiting adenylyl cyclase Nil known

Whole blood, 
monocytes

GTEX 
portal, 
Lloyd-Jones 
2017, Zeller 
2010

ADORA1 antagonists currently being trialed 
for asthma, COPD

ClinicalTrial
s.gov

CCL20 2q36.3

Chemotaxis for dendritic cells, effector/memory T cells 
(Th17, Treg), B cells, inhibits proliferation of myeloid 
progenitors; role at skin and mucosal surfaces Nil known Whole blood GTEX portal

Used in some trials as biomarker of 
interest

ClinicalTrial
s.gov

LINC00709 10p14 Long non-coding RNA; unknown function Nil known Nil known No current applications

GATA3 10p14
Regulator of T cell development (esp. Th2 
differentiation)

Nil known; possibly shared with 
blood cancers (Kong 2014) Nil known

Trial of GATA-3-specific DNAzyme in 
patients with mild allergic asthma Krug 2015

IL4R 16p12.1

Alpha chain of receptor for IL-4; membrane form 
promotes differentiation of Th2 cells; soluble form is 
inhibitory Nil known Whole blood GTEX portal

Dupilmab (IL4R antagonist) currently used 
for atopic dermatitis; Soluble recombinant 
IL4R for treatment of asthma in phase II 
trials

ClinicalTrial
s.gov

IKZF3/ZPBP2 17q12-21.1
IKZF3: Transcription factor regulating B cell proliferation 
and differentiation IKZF3: Nil known

IKZF3: Whole 
blood; ZPBP2: 
lymphoblastoid 
cell lines

Zhernakova 
2017, 
Grundberg 
2012

IKZF3: No current applications; inhibitors 
used in other conditions (SLE, lymphomas)

ClinicalTrial
s.gov, 
Vicente 
2017
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