193 research outputs found

    Rev Proteins of Human and Simian Immunodeficiency Virus Enhance RNA Encapsidation

    Get PDF
    The main function attributed to the Rev proteins of immunodeficiency viruses is the shuttling of viral RNAs containing the Rev responsive element (RRE) via the CRM-1 export pathway from the nucleus to the cytoplasm. This restricts expression of structural proteins to the late phase of the lentiviral replication cycle. Using Rev-independent gag-pol expression plasmids of HIV-1 and simian immunodeficiency virus and lentiviral vector constructs, we have observed that HIV-1 and simian immunodeficiency virus Rev enhanced RNA encapsidation 20- to 70-fold, correlating well with the effect of Rev on vector titers. In contrast, cytoplasmic vector RNA levels were only marginally affected by Rev. Binding of Rev to the RRE or to a heterologous RNA element was required for Rev-mediated enhancement of RNA encapsidation. In addition to specific interactions of nucleocapsid with the packaging signal at the 5′ end of the genome, the Rev/RRE system provides a second mechanism contributing to preferential encapsidation of genomic lentiviral RNA

    Primate Lentiviral Vpx Commandeers DDB1 to Counteract a Macrophage Restriction

    Get PDF
    Primate lentiviruses encode four “accessory proteins” including Vif, Vpu, Nef, and Vpr/Vpx. Vif and Vpu counteract the antiviral effects of cellular restrictions to early and late steps in the viral replication cycle. We present evidence that the Vpx proteins of HIV-2/SIVSM promote virus infection by antagonizing an antiviral restriction in macrophages. Fusion of macrophages in which Vpx was essential for virus infection, with COS cells in which Vpx was dispensable for virus infection, generated heterokaryons that supported infection by wild-type SIV but not Vpx-deleted SIV. The restriction potently antagonized infection of macrophages by HIV-1, and expression of Vpx in macrophages in trans overcame the restriction to HIV-1 and SIV infection. Vpx was ubiquitylated and both ubiquitylation and the proteasome regulated the activity of Vpx. The ability of Vpx to counteract the restriction to HIV-1 and SIV infection was dependent upon the HIV-1 Vpr interacting protein, damaged DNA binding protein 1 (DDB1), and DDB1 partially substituted for Vpx when fused to Vpr. Our results indicate that macrophage harbor a potent antiviral restriction and that primate lentiviruses have evolved Vpx to counteract this restriction

    Natural Variation in Vif: Differential Impact on APOBEC3G/3F and a Potential Role in HIV-1 Diversification

    Get PDF
    The HIV-1 Vif protein counteracts the antiviral activity exhibited by the host cytidine deaminases APOBEC3G and APOBEC3F. Here, we show that defective vif alleles can readily be found in HIV-1 isolates and infected patients. Single residue changes in the Vif protein sequence are sufficient to cause the loss of Vif-induced APOBEC3 neutralization. Interestingly, not all the detected defects lead to a complete inactivation of Vif function since some mutants retained selective neutralizing activity against APOBEC3F but not APOBEC3G or vice versa. Concordantly, independently hypermutated proviruses with distinguishable patterns of G-to-A substitution attributable to cytidine deamination induced by APOBEC3G, APOBEC3F, or both enzymes were present in individuals carrying proviruses with completely or partly defective Vif variants. Natural variation in Vif function may result in selective and partial neutralization of cytidine deaminases and thereby promote viral sequence diversification within HIV-1 infected individuals

    Electron Tomography of the Contact between T Cells and SIV/HIV-1: Implications for Viral Entry

    Get PDF
    The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV), are heterodimers of a transmembrane glycoprotein (usually gp41), and a surface glycoprotein (gp120), which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically ∼120 Å long and ∼120 Å wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is ∼400 Å wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each ∼100 Å long and ∼100 Å wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion–cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the “entry claw”, provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry

    Identification of a CCR5-Expressing T Cell Subset That Is Resistant to R5-Tropic HIV Infection

    Get PDF
    Infection with HIV-1 perturbs homeostasis of human T cell subsets, leading to accelerated immunologic deterioration. While studying changes in CD4(+) memory and naïve T cells during HIV-1 infection, we found that a subset of CD4(+) effector memory T cells that are CCR7(−)CD45RO(−)CD45RA(+) (referred to as T(EMRA) cells), was significantly increased in some HIV-infected individuals. This T cell subset displayed a differentiated phenotype and skewed Th1-type cytokine production. Despite expressing high levels of CCR5, T(EMRA) cells were strikingly resistant to infection with CCR5 (R5)–tropic HIV-1, but remained highly susceptible to CXCR4 (X4)–tropic HIV-1. The resistance of T(EMRA) cells to R5-tropic viruses was determined to be post-entry of the virus and prior to early viral reverse transcription, suggesting a block at the uncoating stage. Remarkably, in a subset of the HIV-infected individuals, the relatively high proportion of T(EMRA) cells within effector T cells strongly correlated with higher CD4(+) T cell numbers. These data provide compelling evidence for selection of an HIV-1–resistant CD4(+) T cell population during the course of HIV-1 infection. Determining the host factors within T(EMRA) cells that restrict R5-tropic viruses and endow HIV-1–specific CD4(+) T cells with this ability may result in novel therapeutic strategies against HIV-1 infection

    Virus Evolution Reveals an Exclusive Role for LEDGF/p75 in Chromosomal Tethering of HIV

    Get PDF
    Retroviruses by definition insert their viral genome into the host cell chromosome. Although the key player of retroviral integration is viral integrase, a role for cellular cofactors has been proposed. Lentiviral integrases use the cellular protein LEDGF/p75 to tether the preintegration complex to the chromosome, although the existence of alternative host proteins substituting for the function of LEDGF/p75 in integration has been proposed. Truncation mutants of LEDGF/p75 lacking the chromosome attachment site strongly inhibit HIV replication by competition for the interaction with integrase. In an attempt to select HIV strains that can overcome the inhibition, we now have used T-cell lines that stably express a C-terminal fragment of LEDGF/p75. Despite resistance development, the affinity of integrase for LEDGF/p75 is reduced and replication kinetics in human primary T cells is impaired. Detection of the integrase mutations A128T and E170G at key positions in the LEDGF/p75–integrase interface provides in vivo evidence for previously reported crystallographic data. Moreover, the complementary inhibition by LEDGF/p75 knockdown and mutagenesis at the integrase–LEDGF/p75 interface points to the incapability of HIV to circumvent LEDGF/p75 function during proviral integration. Altogether, the data provide a striking example of the power of viral molecular evolution. The results underline the importance of the LEDGF/p75 HIV-1 interplay as target for innovative antiviral therapy. Moreover, the role of LEDGF/p75 in targeting integration will stimulate research on strategies to direct gene therapy vectors into safe landing sites

    Small-Molecule Inhibition of HIV pre-mRNA Splicing as a Novel Antiretroviral Therapy to Overcome Drug Resistance

    Get PDF
    The development of multidrug-resistant viruses compromises antiretroviral therapy efficacy and limits therapeutic options. Therefore, it is an ongoing task to identify new targets for antiretroviral therapy and to develop new drugs. Here, we show that an indole derivative (IDC16) that interferes with exonic splicing enhancer activity of the SR protein splicing factor SF2/ASF suppresses the production of key viral proteins, thereby compromising subsequent synthesis of full-length HIV-1 pre-mRNA and assembly of infectious particles. IDC16 inhibits replication of macrophage- and T cell–tropic laboratory strains, clinical isolates, and strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Importantly, drug treatment of primary blood cells did not alter splicing profiles of endogenous genes involved in cell cycle transition and apoptosis. Thus, human splicing factors represent novel and promising drug targets for the development of antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses

    A Paradigm for Virus–Host Coevolution: Sequential Counter-Adaptations between Endogenous and Exogenous Retroviruses

    Get PDF
    Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of the host germline transmitted vertically from generation to generation. It is hypothesized that some ERVs are used by the host as restriction factors to block the infection of pathogenic retroviruses. Indeed, some ERVs efficiently interfere with the replication of related exogenous retroviruses. However, data suggesting that these mechanisms have influenced the coevolution of endogenous and/or exogenous retroviruses and their hosts have been more difficult to obtain. Sheep are an interesting model system to study retrovirus-host coevolution because of the coexistence in this animal species of two exogenous (i.e., horizontally transmitted) oncogenic retroviruses, Jaagsiekte sheep retrovirus and Enzootic nasal tumor virus, with highly related and biologically active endogenous retroviruses (enJSRVs). Here, we isolated and characterized the evolutionary history and molecular virology of 27 enJSRV proviruses. enJSRVs have been integrating in the host genome for the last 5–7 million y. Two enJSRV proviruses (enJS56A1 and enJSRV-20), which entered the host genome within the last 3 million y (before and during speciation within the genus Ovis), acquired in two temporally distinct events a defective Gag polyprotein resulting in a transdominant phenotype able to block late replication steps of related exogenous retroviruses. Both transdominant proviruses became fixed in the host genome before or around sheep domestication (∼ 9,000 y ago). Interestingly, a provirus escaping the transdominant enJSRVs has emerged very recently, most likely within the last 200 y. Thus, we determined sequentially distinct events during evolution that are indicative of an evolutionary antagonism between endogenous and exogenous retroviruses. This study strongly suggests that endogenization and selection of ERVs acting as restriction factors is a mechanism used by the host to fight retroviral infections
    corecore