111 research outputs found

    Weekends affect mortality risk and chance of discharge in critically ill patients: a retrospective study in the Austrian registry for intensive care.

    Get PDF
    BACKGROUND: In this study, we primarily investigated whether ICU admission or ICU stay at weekends (Saturday and Sunday) is associated with a different risk of ICU mortality or chance of ICU discharge than ICU admission or ICU stay on weekdays (Monday to Friday). Secondarily, we analysed whether weekend ICU admission or ICU stay influences risk of hospital mortality or chance of hospital discharge. METHODS: A retrospective study was performed for all adult patients admitted to 119 ICUs participating in the benchmarking project of the Austrian Centre for Documentation and Quality Assurance in Intensive Care (ASDI) between 2012 and 2015. Readmissions to the ICU during the same hospital stay were excluded. RESULTS: In a multivariable competing risk analysis, a strong weekend effect was observed. Patients admitted to ICUs on Saturday or Sunday had a higher mortality risk after adjustment for severity of illness by Simplified Acute Physiology Score (SAPS) 3, year, month of the year, type of admission, ICU, and weekday of death or discharge. Hazard ratios (95% confidence interval) for death in the ICU following admission on a Saturday or Sunday compared with Wednesday were 1.15 (1.08-1.23) and 1.11 (1.03-1.18), respectively. Lower hazard ratios were observed for dying on a Saturday (0.93 (0.87-1.00)) or Sunday (0.85 (0.80-0.91)) compared with Wednesday. This is probably related to the reduced chance of being discharged from the ICU at the weekend (0.63 (0.62-064) for Saturday and 0.56 (0.55-0.57) for Sunday). Similar results were found for hospital mortality and hospital discharge following ICU admission. CONCLUSIONS: Patients admitted to ICUs at weekends are at increased risk of death in both the ICU and the hospital even after rigorous adjustment for severity of illness. Conversely, death in the ICU and discharge from the ICU are significantly less likely at weekends

    Time of Day and its Association with Risk of Death and Chance of Discharge in Critically Ill Patients: A Retrospective Study.

    Get PDF
    Outcomes following admission to intensive care units (ICU) may vary with time and day. This study investigated associations between time of day and risk of ICU mortality and chance of ICU discharge in acute ICU admissions. Adult patients (age ≥ 18 years) who were admitted to ICUs participating in the Austrian intensive care database due to medical or surgical urgencies and emergencies between January 2012 and December 2016 were included in this retrospective study. Readmissions were excluded. Statistical analysis was conducted using the Fine-and-Gray proportional subdistribution hazards model concerning ICU mortality and ICU discharge within 30 days adjusted for SAPS 3 score. 110,628 admissions were analysed. ICU admission during late night and early morning was associated with increased hazards for ICU mortality; HR: 1.17; 95% CI: 1.08-1.28 for 00:00-03:59, HR: 1.16; 95% CI: 1.05-1.29 for 04:00-07:59. Risk of death in the ICU decreased over the day; lowest HR: 0.475, 95% CI: 0.432-0.522 for 00:00-03:59. Hazards for discharge from the ICU dropped sharply after 16:00; lowest HR: 0.024; 95% CI: 0.019-0.029 for 00:00-03:59. We conclude that there are "time effects" in ICUs. These findings may spark further quality improvement efforts

    What is the real impact of acute kidney injury?

    Get PDF
    Background: Acute kidney injury (AKI) is a common clinical problem. Studies have documented the incidence of AKI in a variety of populations but to date we do not believe the real incidence of AKI has been accurately documented in a district general hospital setting. The aim here was to describe the detected incidence of AKI in a typical general hospital setting in an unselected population, and describe associated short and long-term outcomes. Methods: A retrospective observational database study from secondary care in East Kent (adult catchment population of 582,300). All adult patients (18 years or over) admitted between 1st February 2009 and 31st July 2009, were included. Patients receiving chronic renal replacement therapy (RRT), maternity and day case admissions were excluded. AKI was defined by the acute kidney injury network (AKIN) criteria. A time dependent risk analysis with logistic regression and Cox regression was used for the analysis of in-hospital mortality and survival. Results: The incidence of AKI in the 6 month period was 15,325 pmp/yr (adults) (69% AKIN1, 18% AKIN2 and 13% AKIN3). In-hospital mortality, length of stay and ITU utilisation all increased with severity of AKI. Patients with AKI had an increase in care on discharge and an increase in hospital readmission within 30 days. Conclusions: This data comes closer to the real incidence and outcomes of AKI managed in-hospital than any study published in the literature to date. Fifteen percent of all admissions sustained an episode of AKI with increased subsequent short and long term morbidity and mortality, even in those with AKIN1. This confers an increased burden and cost to the healthcare economy, which can now be quantified. These results will furnish a baseline for quality improvement projects aimed at early identification, improved management, and where possible prevention, of AKI

    Do acute elevations of serum creatinine in primary care engender an increased mortality risk?

    Get PDF
    Background: The significant impact Acute Kidney Injury (AKI) has on patient morbidity and mortality emphasizes the need for early recognition and effective treatment. AKI presenting to or occurring during hospitalisation has been widely studied but little is known about the incidence and outcomes of patients experiencing acute elevations in serum creatinine in the primary care setting where people are not subsequently admitted to hospital. The aim of this study was to define this incidence and explore its impact on mortality. Methods: The study cohort was identified by using hospital data bases over a six month period. Inclusion criteria: People with a serum creatinine request during the study period, 18 or over and not on renal replacement therapy. The patients were stratified by a rise in serum creatinine corresponding to the Acute Kidney Injury Network (AKIN) criteria for comparison purposes. Descriptive and survival data were then analysed. Ethical approval was granted from National Research Ethics Service (NRES) Committee South East Coast and from the National Information Governance Board. Results: The total study population was 61,432. 57,300 subjects with ‘no AKI’, mean age 64.The number (mean age) of acute serum creatinine rises overall were, ‘AKI 1’ 3,798 (72), ‘AKI 2’ 232 (73), and ‘AKI 3’ 102 (68) which equates to an overall incidence of 14,192 pmp/year (adult). Unadjusted 30 day survival was 99.9% in subjects with ‘no AKI’, compared to 98.6%, 90.1% and 82.3% in those with ‘AKI 1’, ‘AKI 2’ and ‘AKI 3’ respectively. After multivariable analysis adjusting for age, gender, baseline kidney function and co-morbidity the odds ratio of 30 day mortality was 5.3 (95% CI 3.6, 7.7), 36.8 (95% CI 21.6, 62.7) and 123 (95% CI 64.8, 235) respectively, compared to those without acute serum creatinine rises as defined. Conclusions: People who develop acute elevations of serum creatinine in primary care without being admitted to hospital have significantly worse outcomes than those with stable kidney function

    A Comparison of Administrative and Physiologic Predictive Models in Determining Risk Adjusted Mortality Rates in Critically Ill Patients

    Get PDF
    Hospitals are increasingly compared based on clinical outcomes adjusted for severity of illness. Multiple methods exist to adjust for differences between patients. The challenge for consumers of this information, both the public and healthcare providers, is interpreting differences in risk adjustment models particularly when models differ in their use of administrative and physiologic data. We set to examine how administrative and physiologic models compare to each when applied to critically ill patients.We prospectively abstracted variables for a physiologic and administrative model of mortality from two intensive care units in the United States. Predicted mortality was compared through the Pearsons Product coefficient and Bland-Altman analysis. A subgroup of patients admitted directly from the emergency department was analyzed to remove potential confounding changes in condition prior to ICU admission.We included 556 patients from two academic medical centers in this analysis. The administrative model and physiologic models predicted mortalities for the combined cohort were 15.3% (95% CI 13.7%, 16.8%) and 24.6% (95% CI 22.7%, 26.5%) (t-test p-value<0.001). The r(2) for these models was 0.297. The Bland-Atlman plot suggests that at low predicted mortality there was good agreement; however, as mortality increased the models diverged. Similar results were found when analyzing a subgroup of patients admitted directly from the emergency department. When comparing the two hospitals, there was a statistical difference when using the administrative model but not the physiologic model. Unexplained mortality, defined as those patients who died who had a predicted mortality less than 10%, was a rare event by either model.In conclusion, while it has been shown that administrative models provide estimates of mortality that are similar to physiologic models in non-critically ill patients with pneumonia, our results suggest this finding can not be applied globally to patients admitted to intensive care units. As patients and providers increasingly use publicly reported information in making health care decisions and referrals, it is critical that the provided information be understood. Our results suggest that severity of illness may influence the mortality index in administrative models. We suggest that when interpreting "report cards" or metrics, health care providers determine how the risk adjustment was made and compares to other risk adjustment models

    Delta neutrophil index as an early marker of disease severity in critically ill patients with sepsis

    Get PDF
    BACKGROUND: The immature granulocyte count has been reported to be a marker of infection and sepsis. The difference in leukocyte subfractions (delta neutrophil index, DNI) in ADVIA 2120 reflects the fraction of circulating immature granulocytes in the blood. This study evaluated the clinical utility of DNI as a severity and prediction marker in critically ill patients with sepsis. METHODS: One hundred and three patients admitted to the medical intensive care unit with sepsis were studied. DNI (the difference in leukocyte subfractions identified by myeloperoxidase and nuclear lobularity channels) was determined using a specific blood cell analyzer. RESULTS: Forty four patients (42.7%) were diagnosed with severe sepsis/septic shock. Overt disseminated intravascular coagulation (DIC) occurred in 40 (38.8%). DNI was significantly higher in patients with severe sepsis/septic shock and overt DIC than in patients without (p 6.5% was a better indicator of severe sepsis/septic shock than C-reactive protein, lactate, white blood cell count, and absolute neutrophil count (sensitivity, 81.3%; specificity, 91.0%; positive predictive value, 88.6%; and negative predictive value, 84.7%). In 36 (82%) of the 44 patients with severe sepsis/septic shock, DNI values were already elevated up to 12 hours before the onset of organ/circulatory failure. CONCLUSIONS: DNI may be used as a marker of disease severity in critically ill patients with sepsis. High levels of DNI may help to identify patients with an impending risk of developing severe sepsis/septic shock.ope

    Prognosis and serum creatinine levels in acute renal failure at the time of nephrology consultation: an observational cohort study

    Get PDF
    The aim of this study is to evaluate the association between acute serum creatinine changes in acute renal failure (ARF), before specialized treatment begins, and in-hospital mortality, recovery of renal function, and overall mortality at 6 months, on an equal degree of ARF severity, using the RIFLE criteria, and comorbid illnesses. METHODS: Prospective cohort study of 1008 consecutive patients who had been diagnosed as having ARF, and had been admitted in an university-affiliated hospital over 10 years. Demographic, clinical information and outcomes were measured. After that, 646 patients who had presented enough increment in serum creatinine to qualify for the RIFLE criteria were included for subsequent analysis. The population was divided into two groups using the median serum creatinine change (101%) as the cut-off value. Multivariate non-conditional logistic and linear regression models were used. RESULTS: A >or= 101% increment of creatinine respect to its baseline before nephrology consultation was associated with significant increase of in-hospital mortality (35.6% vs. 22.6%, p < 0.001), with an adjusted odds ratio of 1.81 (95% CI: 1.08-3.03). Patients who required continuous renal replacement therapy in the >or= 101% increment group presented a higher increase of in-hospital mortality (62.7% vs 46.4%, p = 0.048), with an adjusted odds ratio of 2.66 (95% CI: 1.00-7.21). Patients in the >or= 101% increment group had a higher mean serum creatinine level with respect to their baseline level (114.72% vs. 37.96%) at hospital discharge. This was an adjusted 48.92% (95% CI: 13.05-84.79) more serum creatinine than in the < 101% increment group. CONCLUSION: In this cohort, patients who had presented an increment in serum level of creatinine of >or= 101% with respect to basal values, at the time of nephrology consultation, had increased mortality rates and were discharged from hospital with a more deteriorated renal function than those with similar Liano scoring and the same RIFLE classes, but with a < 101% increment. This finding may provide more information about the factors involved in the prognosis of ARF. Furthermore, the calculation of relative serum creatinine increase could be used as a practical tool to identify those patients at risk, and that would benefit from an intensive therapy

    What is the empirical evidence that hospitals with higher-risk adjusted mortality rates provide poorer quality care? A systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite increasing interest and publication of risk-adjusted hospital mortality rates, the relationship with underlying quality of care remains unclear. We undertook a systematic review to ascertain the extent to which variations in risk-adjusted mortality rates were associated with differences in quality of care.</p> <p>Methods</p> <p>We identified studies in which risk-adjusted mortality and quality of care had been reported in more than one hospital. We adopted an iterative search strategy using three databases – Medline, HealthSTAR and CINAHL from 1966, 1975 and 1982 respectively. We identified potentially relevant studies on the basis of the title or abstract. We obtained these papers and included those which met our inclusion criteria.</p> <p>Results</p> <p>From an initial yield of 6,456 papers, 36 studies met the inclusion criteria. Several of these studies considered more than one process-versus-risk-adjusted mortality relationship. In total we found 51 such relationships in a widen range of clinical conditions using a variety of methods. A positive correlation between better quality of care and risk-adjusted mortality was found in under half the relationships (26/51 51%) but the remainder showed no correlation (16/51 31%) or a paradoxical correlation (9/51 18%).</p> <p>Conclusion</p> <p>The general notion that hospitals with higher risk-adjusted mortality have poorer quality of care is neither consistent nor reliable.</p
    corecore