6,233 research outputs found

    Microscopic description of dissipative dynamics of a level crossing transition

    Full text link
    We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stuckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak dissipation our microscopic approach confirms the independence of the survival probability on the decay rate that has been predicted earlier by the simple phenomenological LZSM model. For strong decay the microscopic approach predicts a notable increase of the survival probability, which signals dynamical decoupling of the initial state. Unlike the phenomenological model our approach makes it possible to study the dependence of the system dynamics on the temperature of the environment. In the limit of very high temperature we find that the dynamics is characterized by a very strong dynamical decoupling of the initial state - temperature-induced quantum Zeno effect.Comment: 6 pages, 4 figure

    Spin-1/2 sub-dynamics nested in the quantum dynamics of two coupled qutrits

    Full text link
    In this paper we investigate the quantum dynamics of two spin-1 systems, S⃗1\vec{\textbf{S}}_1 and S⃗2\vec{\textbf{S}}_2, adopting a generalized (S⃗1+S⃗2)2(\vec{\textbf{S}}_1+\vec{\textbf{S}}_2)^2-nonconserving Heisenberg model. We show that, due to its symmetry property, the nine-dimensional dynamics of the two qutrits exactly decouples into the direct sum of two sub-dynamics living in two orthogonal four- and five-dimensional subspaces. Such a reduction is further strengthened by our central result consisting in the fact that in the four-dimensional dynamically invariant subspace, the two qutrits quantum dynamics, with no approximations, is equivalent to that of two non interacting spin 1/2's. The interpretative advantages stemming from such a remarkable and non-intuitive nesting are systematically exploited and various intriguing features consequently emerging in the dynamics of the two qutrits are deeply scrutinised. The possibility of exploiting the dynamical reduction brought to light in this paper for exactly treating as well time-dependent versions of our Hamiltonian model is briefly discussed.Comment: 14 pages, 11 figures; Last two authors name corrected, corrected typos, Fig. 11 changed (same result

    Definition of smolder experiments for Spacelab

    Get PDF
    The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities

    Stimulated Raman adiabatic passage in an open quantum system: Master equation approach

    Get PDF
    A master equation approach to the study of environmental effects in the adiabatic population transfer in three-state systems is presented. A systematic comparison with the non-Hermitian Hamiltonian approach [N. V. Vitanov and S. Stenholm, Phys. Rev. A {\bf 56}, 1463 (1997)] shows that in the weak coupling limit the two treatments lead to essentially the same results. Instead, in the strong damping limit the predictions are quite different: in particular the counterintuitive sequences in the STIRAP scheme turn out to be much more efficient than expected before. This point is explained in terms of quantum Zeno dynamics.Comment: 11 pages, 4 figure

    Nonequilibrium Casimir-Polder Force in Non-Stationary Systems

    Full text link
    Recently the Casmir-Polder force felt by an atom near a substrate under nonequilibrium stationary conditions has been studied theoretically with macroscopic quantum electrodyanamics (MQED) and verified experimentally with cold atoms. We give a quantum field theory derivation of the Langevin equation describing the atom's motion based on the influence functional method valid for fully nonequilibrium (nonstationary) conditions. The noise associated with the quantum field derived from first principles is generally colored and nonlocal, which is at variance with the `local source hypothesis' of MQED's generalization to nonequilibrium conditions. Precision measurements on the shape deformation of an atomic gas as a function of its distance from a mirror would provide a direct check of our predictions based on this Langevin equation.Comment: Rewritten Introduction and Abstract in v2 with a slightly altered title to place a sharper focus of our goals and a clearer distinction of what the influence functional method can achieve beyond the macroscopic QED approach. The rest of the paper and the results remain the sam

    Polyelectrolyte Multilayering on a Charged Planar Surface

    Full text link
    The adsorption of highly \textit{oppositely} charged flexible polyelectrolytes (PEs) on a charged planar substrate is investigated by means of Monte Carlo (MC) simulations. We study in detail the equilibrium structure of the first few PE layers. The influence of the chain length and of a (extra) non-electrostatic short range attraction between the polycations and the negatively charged substrate is considered. We show that the stability as well as the microstructure of the PE layers are especially sensitive to the strength of this latter interaction. Qualitative agreement is reached with some recent experiments.Comment: 28 pages; 11 (main) Figs - Revtex4 - Higher resolution Figs can be obtained upon request. To appear in Macromolecule

    Ion pairing in model electrolytes: A study via three particle correlation functions

    Full text link
    A novel integral equations approach is applied for studying ion pairing in the restricted primitive model (RPM) electrolyte, i. e., the three point extension (TPE) to the Ornstein-Zernike integral equations. In the TPE approach, the three-particle correlation functions g[3](r1,r2,r3)g^{[3]}({\bf r}_{1},{\bf r}_{2},{\bf r}_{3}) are obtained. The TPE results are compared to molecular dynamics (MD) simulations and other theories. Good agreement between TPE and MD is observed for a wide range of parameters, particularly where standard integral equations theories fail, i. e., low salt concentration and high ionic valence. Our results support the formation of ion pairs and aligned ion complexes.Comment: 43 pages (including 18 EPS figs) - RevTeX 4 - J. Chem. Phys. (in press

    ‘Esprit de corps’: Towards collaborative integration of pharmacists and nurses into antimicrobial stewardship programmes in South Africa

    Get PDF
    With the global threat of antimicrobial resistance now more emergent than ever, there should be wider collaboration between members of the multidisciplinary healthcare team. This article proposes possible ways of engagement between the pharmacist, nurse and doctor. The pharmacist and nurse are placed in an ideal position through united efforts (camaraderie) to redirect healthcare towards improved patient outcomes while also reducing antimicrobial resistance

    Zeno-like phenomena in STIRAP processes

    Get PDF
    The presence of a continuous measurement quantum Zeno effect in a Stimulated Rapid Adiabatic Passage is studied, exploring in detail a sort of self-competition of the damping, which drives the system toward a loss of population and, at the same time, realizes the conditions to optimize the adiabatic passag

    ArDM: a ton-scale liquid Argon experiment for direct detection of Dark Matter in the Universe

    Full text link
    The ArDM project aims at developing and operating large noble liquid detectors to search for direct evidence of Weakly Interacting Massive Particle (WIMP) as Dark Matter in the Universe. The initial goal is to design, assemble and operate a ≈\approx1 ton liquid Argon prototype to demonstrate the feasibility of a ton-scale experiment with the required performance to efficiently detect and sufficiently discriminate backgrounds for a successful WIMP detection. Our design addresses the possibility to detect independently ionization and scintillation signals. In this paper, we describe this goal and the conceptual design of the detector.Comment: 5 pages, 3 figures, Talk given at IXth international conference on Topics in Astroparticle and Underground Physics (TAUP05), Zaragoza, (Spain
    • 

    corecore