7 research outputs found
The Survivin and cIAP1 Anti-apoptotic Proteins are Differentially Downregulated in Response to Endoplasmic Reticulum Stress
The endoplasmic reticulum (ER) is an organelle tasked with synthesis and transport of 50% of new cellular proteins. Dysfunction within this organelle creates signals for repair, adaptation, and in severe cases, cellular apoptosis. Multiple human diseases have been associated with ER dysfunction, and the activation of apoptosis in important populations of cells. Inhibitor of Apoptosis (IAP) proteins are cytosolic proteins that play an anti-apoptotic role in the cytosol. The relationship between endoplasmic reticulum (ER) stress and the expression/stability of IAPs is not well characterized. The objective of this study was to characterize the affect of ER stress on the expression/stability of five members of the IAP family; XIAP, cIAP1, cIAP2, Survivin, and Livin. We also assessed how inhibition of the PI3kinase/Akt pathway affects expression of these proteins. In model cell lines (BHK21, A549), Survivin and cIAP1 expression was detected by immunoblot. ER stress was shown to induce a reduction of both Survivin and cIAP1 in a time and dose dependent manner, with Survivin displaying a more dynamic response. The phosphatidylinositol-3 kinase (PI3K) pathway has been associated with regulating expression of some IAP proteins. Inhibition of the PI3K decreased Survivin expression in both cell lines. Further research is required to confirm the affects of ER stress upon regulation of IAP expression (PI3K) and upon stability
The Curtain Rises: Teachers Unveil Their Processes of Transformation in Doing Classroom Inquiry
This paper is the joint reflection of a group of teachers on their transformative process of engaging in a systematic inquiry in their own classrooms. While sharing and reconstructing their experiences, they found that most of them went from detachment and resistance, when they were introduced to the idea of teacher-research, to engagement in a community of inquirers, and to uncovering the unforeseen benefits of doing teacher-inquiry
Gestational Diabetes Augments Group B Streptococcus Infection by Disrupting Maternal Immunity and the Vaginal Microbiota
Group B Streptococcus (GBS) is a pervasive perinatal pathogen, yet factors driving GBS dissemination in utero are poorly defined. Gestational diabetes mellitus (GDM), a complication marked by dysregulated immunity and maternal microbial dysbiosis, increases risk for GBS perinatal disease. Using a murine GDM model of GBS colonization and perinatal transmission, we find that GDM mice display greater GBS in utero dissemination and subsequently worse neonatal outcomes. Dual-RNA sequencing reveals differential GBS adaptation to the GDM reproductive tract, including a putative glycosyltransferase (yfhO), and altered host responses. GDM immune disruptions include reduced uterine natural killer cell activation, impaired recruitment to placentae, and altered maternofetal cytokines. Lastly, we observe distinct vaginal microbial taxa associated with GDM status and GBS invasive disease status. Here, we show a model of GBS dissemination in GDM hosts that recapitulates several clinical aspects and identifies multiple host and bacterial drivers of GBS perinatal disease
Multiple Sclerosis in a Multi-Ethnic Population in Houston, Texas: A Retrospective Analysis
Multiple Sclerosis (MS) is a progressive neurodegenerative disease that affects more than 2 million people worldwide. Increasing knowledge about MS in different populations has advanced our understanding of disease epidemiology and variation in the natural history of MS among White and minority populations. In addition to differences in incidence, African American (AA) and Hispanic patients have greater disease burden and disability in earlier stages of disease compared to White patients. To further characterize MS in AA and Hispanic populations, we conducted a retrospective chart analysis of 112 patients treated at an MS center in Houston, Texas. Here, we describe similarities and differences in clinical presentation, MRI findings, treatment regimens, disability progression, and relapse rate. While we found several similarities between the groups regarding mean age, disability severity, and degree of brain atrophy at diagnosis, we also describe a few divergences. Interestingly, we found that patients who were evaluated by a neurologist at symptom onset had significantly decreased odds of greater disability [defined as Expanded Disability Status Scale (EDSS) > 4.5] at last presentation compared to patients who were not evaluated by a neurologist (OR: 0.04, 95% CI: 0.16–0.9). We also found that active smokers had significantly increased odds of greater disability both at diagnosis and at last clinical encounter compared to nonsmokers (OR: 2.44, 95% CI: 1.10–7.10, OR= 2.44, 95% CI: 1.35–6.12, p = 0.01, respectively). Additionally, we observed significant differences in treatment adherence between groups. Assessment of the degree of brain atrophy and progression over time, along with an enumeration of T1, T2, and gadolinium-enhancing brain lesions, did not reveal differences across groups
Hypoxia-Inducible Factor 1 Alpha Is Dispensable for Host Defense of Group B Streptococcus Colonization and Infection.
Group B Streptococcus (GBS) is a leading cause of neonatal morbidity and mortality, and the primary source of exposure is the maternal vagina. Intrapartum antibiotic prophylaxis for GBS-positive mothers has reduced the incidence of GBS early-onset disease, however, potential long-lasting influence of an antibiotic-altered neonatal microbiota, and the frequent clinical sequelae in survivors of invasive GBS infection, compels alternative treatment options for GBS. Here, we examined the role of transcription factor hypoxia-inducible factor 1 alpha (HIF-1α), widely recognized as a regulator of immune activation during infection, in the host response to GBS. Given the importance of endogenous HIF-1α for innate immune defense, and the potential utility of HIF-1α stabilization in promoting bacterial clearance, we hypothesized that HIF-1α could play an important role in coordinating host responses to GBS in colonization and systemic disease. Counter to our hypothesis, we found that GBS infection did not induce HIF-1α expression in vaginal epithelial cells or murine macrophages, nor did HIF-1α deficiency alter GBS colonization or pathogenesis in vivo. Furthermore, pharmacological enhancement of HIF-1α did not improve control of GBS in pathogenesis and colonization models, while displaying inhibitory effects in vaginal epithelial cytokines and immune cell killing in vitro. Taken together, we conclude that HIF-1α is not a prominent aspect of the host response to GBS colonization or invasive disease, and its pharmacological modulation is unlikely to provide significant benefit against this important neonatal pathogen
Gestational diabetes augments group B Streptococcus infection by disrupting maternal immunity and the vaginal microbiota
Abstract Group B Streptococcus (GBS) is a pervasive perinatal pathogen, yet factors driving GBS dissemination in utero are poorly defined. Gestational diabetes mellitus (GDM), a complication marked by dysregulated immunity and maternal microbial dysbiosis, increases risk for GBS perinatal disease. Using a murine GDM model of GBS colonization and perinatal transmission, we find that GDM mice display greater GBS in utero dissemination and subsequently worse neonatal outcomes. Dual-RNA sequencing reveals differential GBS adaptation to the GDM reproductive tract, including a putative glycosyltransferase (yfhO), and altered host responses. GDM immune disruptions include reduced uterine natural killer cell activation, impaired recruitment to placentae, and altered maternofetal cytokines. Lastly, we observe distinct vaginal microbial taxa associated with GDM status and GBS invasive disease status. Here, we show a model of GBS dissemination in GDM hosts that recapitulates several clinical aspects and identifies multiple host and bacterial drivers of GBS perinatal disease