13 research outputs found
Effect of antioxidant supplementation on the total yield, oxidative stress levels and multipotency of bone marrow-derived human mesenchymal stromal cells
Bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the most frequently investigated cell type for potential regenerative strategies because they are relatively easy to isolate and are able to differentiate into several mesenchymal lineages. Unfortunately, during ex vivo culture, MSCs present gradual loss of differentiation potential and reduced clinical efficacy. Reactive oxygen species (ROS) are associated with oxidative damage and accumulate during MSC expansion. Because ROS are believed to be involved in the loss of multipotency, we hypothesized that compounds with antioxidant activity have the capacity to scavenge ROS, prevent cellular damage, and rescue culture-induced loss of multipotency. In this manuscript, we show that antioxidant supplementation can partially rescue the loss of alkaline phosphatase expression induced by oxidizing agents and increases the yield of hMSCs, when supplemented to a fresh bone marrow aspirate. Concomitantly, oxidative DNA damage and ROS levels in hMSCs were reduced by antioxidants. We conclude that antioxidant supplementation during MSC expansion reduces the DNA damage load and increases the MSC yield
High throughput surface plasmon resonance imaging method for clinical detection of presence and strength of binding of IgM, IgG and IgA antibodies against SARS-CoV-2 during CoViD-19 infection
Surface Plasmon Resonance imaging (SPRi) was used to determine the presence and strength of binding of IgG, IgM and IgA against the Receptor Binding Domain (RBD) of SARS-CoV-2 in sera of 102 CoViD-19 and non-CoViD-19 patients. The SPRi assay simultaneously measures the antibody isotype levels and the strength of binding to the RBD of ultimate 384 patient samples in one run. It turns out that during the course of the disease, the IgG levels and strength of binding increased while generally the IgM and IgA levels go down. Recovered patients all show high strength of binding of the IgG type to the RBD protein. The anti-RBD immunoglobulins SPRi assay provides additional insights in the immune status of patients recovering from CoViD-19. This new high throughput method can be applied for the assessment of the quality of the immune reaction of healthy individuals to SARS-CoV-2 and its mutants in vaccination programs.•Surface Plasmon Resonance imaging is an unprecedented technology for high throughput screening of antibody profiling of CoViD19 patients.•Fingerprinting of isotypes IgM, IgG and IgA can be performed for 384 patients in one run.•An affinity maturation effect was shown for patients recovering from CoViD19
H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells
In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type–independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors
Platelet phosphatidylserine exposure and procoagulant activity in clotting whole blood : different effects of collagen,TRAP and calcium ionophore A23187
We have studied the effects of different platelet agonists onphosphatidylserine (PS) exposure and clotting times in bloodwithout anticoagulants. Similar reductions in clotting time wereobtained for collagen, TRAP-6 or calcium ionophore A23187(50 µmol/L), in spite of huge differences in PS expression[6.7 ± 2.4%, 2.3 ± 0.5% and 99.9 ± 0.1%, respectively (mean ±SD, n = 5)]. Furthermore, the clotting times were much longerfor samples with A23187 exposing the same amounts of PS assamples with collagen or TRAP-6. Annexin V reversed theclotting time reduction, but could not prevent coagulation.Addition of phospholipid vesicles containing 20% PS neitheraffected the clotting times nor induced clotting in recalcified,platelet-free plasma.We conclude that platelet PS exposure is necessary, but notsufficient, for the coagulation amplification observed whenplatelets are stimulated via physiological receptors in a wholeblood environment
Capture of Tumor Cells on Anti-EpCAM-Functionalized Poly(acrylic acid)-Coated Surfaces
The presence of tumor cells in blood is predictive of short survival in several cancers and their isolation and characterization can guide toward the use of more effective treatments. These circulating tumor cells (CTC) are, however, extremely rare and require a technology that is sufficiently sensitive and specific to identify CTC against a background of billions of blood cells. Immuno-capture of cells expressing the epithelial cell adhesion molecule (EpCAM) are frequently used to enrich CTC from blood. The choice of bio conjugation strategy and antibody clone is crucial for adequate cell capture but is poorly understood. In this study, we determined the binding affinity constants and epitope binding of the EpCAM antibodies VU1D-9, HO-3, EpAb3-5, and MJ-37 by surface plasmon resonance imaging (SPRi). Glass surfaces were coated using a poly(acrylic acid) based coating and functionalized with anti-EpCAM antibodies. Binding of cells from the breast carcinoma cell line (SKBR-3) to the functionalized surfaces were compared. Although EpAb3-5 displayed the highest binding affinity HO-3 captured the highest amount of cells. Hence we report differences in the performance of the different antibodies and more importantly that the choice of antibody to capture CTC should be based on multiple assays