27,208 research outputs found

    Modulation efficiency of LiNbO<sub>3</sub> waveguide electro-optic intensity modulator operating at high microwave frequency

    No full text
    The modulation efficiency, at high-frequency microwave modulation, of a LiNbO3 waveguide electro-optic modulator is shown to be degraded severely, especially when it is used as a frequency translator in a Brillouin-distributed fiber-sensing system. We derive an analytical expression for this attenuation regarding the phase-velocity mismatch and the impedance mismatch during the modulation process. Theoretical results are confirmed by experimental results based on a 15 Gb/s LiNbO3 optical intensity modulator

    The effect of asymmetry of the coil block on self-assembly in ABC coil-rod-coil triblock copolymers

    Full text link
    Using the self-consistent field approach, the effect of asymmetry of the coil block on the microphase separation is focused in ABC coil-rod-coil triblock copolymers. For different fractions of the rod block fBf_{\text B}, some stable structures are observed, i.e., lamellae, cylinders, gyroid, and core-shell hexagonal lattice, and the phase diagrams are constructed. The calculated results show that the effect of the coil block fraction fAf_{\text A} is dependent on fBf_{\text B}. When fB=0.2f_{\text B}=0.2, the effect of asymmetry of the coil block is similar to that of the ABC flexible triblock copolymers; When fB=0.4f_{\text B}=0.4, the self-assembly of ABC coil-rod-coil triblock copolymers behaves like rod-coil diblock copolymers under some condition. When fBf_{\text B} continues to increase, the effect of asymmetry of the coil block reduces. For fB=0.4f_{\text B}=0.4, under the symmetrical and rather asymmetrical conditions, an increase in the interaction parameter between different components leads to different transitions between cylinders and lamellae. The results indicate some remarkable effect of the chain architecture on self-assembly, and can provide the guidance for the design and synthesis of copolymer materials.Comment: 9 pages, 3 figure

    New transformation of Wigner operator in phase space quantum mechanics for the two-mode entangled case

    Full text link
    As a natural extension of Fan's paper (arXiv: 0903.1769vl [quant-ph]) by employing the formula of operators' Weyl ordering expansion and the bipartite entangled state representation we find new two-fold complex integration transformation about the Wigner operator (in its entangled form) in phase space quantum mechanics and its inverse transformation. In this way, some operator ordering problems can be solved and the contents of phase space quantum mechanics can be enriched.Comment: 8 pages, 0 figure

    On the Nature of X(4260)

    Full text link
    We study the property of X(4260)X(4260) resonance by re-analyzing all experimental data available, especially the e+eJ/ψπ+π,ωχc0e^+e^- \rightarrow J/\psi\,\pi^+\pi^-,\,\,\,\omega\chi_{c0} cross section data. The final state interactions of the ππ\pi\pi, KKˉK\bar K couple channel system are also taken into account. A sizable coupling between the X(4260)X(4260) and ωχc0\omega\chi_{c0} is found. The inclusion of the ωχc0\omega\chi_{c0} data indicates a small value of Γe+e=23.30±3.55\Gamma_{e^+e^-}=23.30\pm 3.55eV.Comment: Refined analysis with new experimental data included. 13 page

    The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation

    Full text link
    We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ~ 40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the \b{eta} Pictoris Moving Group, \r{ho} Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius-Centaurus, and Tucana-Horologium. Our work features: 1.) a filtering technique to flag noisy backgrounds, 2.) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources, and 3.) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 {\mu}m decays relatively slowly initially and then much more rapidly by ~ 10 Myr. However, there is a continuing component until ~ 35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12 - 20 Myr, including ~ 13 % of the original population, and with a post-peak mean duration of 10 - 20 Myr.Comment: accepted for publication, the Astrophysical Journal (2017

    Weyl superconductors

    Full text link
    We study the physics of the superconducting variant of Weyl semimetals, which may be realized in multilayer structures comprising topological insulators and superconductors. We show how superconductivity can split each Weyl node into two. The resulting Bogoliubov Weyl nodes can be pairwise independently controlled, allowing to access a set of phases characterized by different numbers of bulk Bogoliubov Weyl nodes and chiral Majorana surface modes. We analyze the physics of vortices in such systems, which trap zero energy Majorana modes only under certain conditions. We finally comment on possible experimental probes, thereby also exploiting the similarities between Weyl superconductors and 2-dimensional p + ip superconductors.Comment: 13 pages, 5 figure

    Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations and β\beta-decay half-lives

    Get PDF
    The self-consistent quasiparticle random-phase approximation (QRPA) approach is formulated in the canonical single-nucleon basis of the relativistic Hatree-Fock-Bogoliubov (RHFB) theory. This approach is applied to study the isobaric analog states (IAS) and Gamov-Teller resonances (GTR) by taking Sn isotopes as examples. It is found that self-consistent treatment of the particle-particle residual interaction is essential to concentrate the IAS in a single peak for open-shell nuclei and the Coulomb exchange term is very important to predict the IAS energies. For the GTR, the isovector pairing can increase the calculated GTR energy, while the isoscalar pairing has an important influence on the low-lying tail of the GT transition. Furthermore, the QRPA approach is employed to predict nuclear β\beta-decay half-lives. With an isospin-dependent pairing interaction in the isoscalar channel, the RHFB+QRPA approach almost completely reproduces the experimental β\beta-decay half-lives for nuclei up to the Sn isotopes with half-lives smaller than one second. Large discrepancies are found for the Ni, Zn, and Ge isotopes with neutron number smaller than 5050, as well as the Sn isotopes with neutron number smaller than 8282. The potential reasons for these discrepancies are discussed in detail.Comment: 34 pages, 14 figure

    Mean-field embedding of the dual fermion approach for correlated electron systems

    Get PDF
    To reduce the rapidly growing computational cost of the dual fermion lattice calculation with increasing system size, we introduce two embedding schemes. One is the real fermion embedding, and the other is the dual fermion embedding. Our numerical tests show that the real fermion and dual fermion embedding approaches converge to essentially the same result. The application on the Anderson disorder and Hubbard models shows that these embedding algorithms converge more quickly with system size as compared to the conventional dual fermion method, for the calculation of both single-particle and two-particle quantities.Comment: 10 pages, 10 figure

    Dual Fermion Method for Disordered Electronic Systems

    Get PDF
    While the coherent potential approximation (CPA) is the prevalent method for the study of disordered electronic systems, it fails to capture non-local correlations and Anderson localization. To incorporate such effects, we extend the dual fermion approach to disordered non-interacting systems using the replica method. Results for single- and two- particle quantities show good agreement with cluster extensions of the CPA; moreover, weak localization is captured. As a natural extension of the CPA, our method presents an alternative to the existing cluster theories. It can be used in various applications, including the study of disordered interacting systems, or for the description of non-local effects in electronic structure calculations.Comment: 5 pages, 4 figure
    corecore