130 research outputs found

    Saddle point localization of molecular wavefunctions

    Get PDF
    The quantum mechanical description of isomerization is based on bound eigenstates of the molecular potential energy surface. For the near-minimum regions there is a textbook-based relationship between the potential and eigenenergies. Here we show how the saddle point region that connects the two minima is encoded in the eigenstates of the model quartic potential and in the energy levels of the [H, C, N] potential energy surface. We model the spacing of the eigenenergies with the energy dependent classical oscillation frequency decreasing to zero at the saddle point. The eigenstates with the smallest spacing are localized at the saddle point. The analysis of the HCN???HNC isomerization states shows that the eigenstates with small energy spacing relative to the effective (v1, v3, l) bending potentials are highly localized in the bending coordinate at the transition state. These spectroscopically detectable states represent a chemical marker of the transition state in the eigenenergy spectrum. The method developed here provides a basis for modeling characteristic patterns in the eigenenergy spectrum of bound states

    Complete experimental rovibrational eigenenergies of HCN up to 6880 cm(-1) above the ground state

    Get PDF
    The [H, C, N] molecular system is a very important model system to many fields of chemical physics and the experimental characterization of highly excited vibrational states of this molecular system is of special interest. This paper reports the experimental characterization of all 3822 eigenenergies up to 6880 cm(-1) relative to the ground state in the HCN part of the potential surface using high temperature hot gas emission spectroscopy. The spectroscopic constants for the first 71 vibrational states including highly excited bending vibrations up to nu(2) = 10 are reported. The perturbed eigenenergies for all 20 rotational perturbations in the reported eigenenergy range have been determined. The 11 070 eigenenergies up to J = 90 for the first 123 vibrational substates are included as supplement to this paper. We show that a complete ab initio rovibrational analysis for a polyatomic molecule is possible. Using such an analysis we can understand the molecular physics behind the Schrodinger equation for problems for which perturbation theoretical calculations are no more valid. We show that the vibrational structure of the linear HCN molecule persists approximately up to the isomerization barrier and only above the barrier the accommodation of the vibrational states to the double well structure of the potential takes place

    Plasma Calcium, Inorganic Phosphate and Magnesium During Hypocalcaemia Induced by a Standardized EDTA Infusion in Cows

    Get PDF
    The intravenous Na2EDTA infusion technique allows effective specific chelation of circulating Ca2+ leading to a progressive hypocalcaemia. Methods previously used were not described in detail and results obtained by monitoring total and free ionic calcium were not comparable due to differences in sampling and analysis. This paper describes a standardized EDTA infusion technique that allowed comparison of the response of calcium, phosphorus and magnesium between 2 groups of experimental cows. The concentration of the Na2EDTA solution was 0.134 mol/l and the flow rate was standardized at 1.2 ml/kg per hour. Involuntary recumbency occurred when ionised calcium dropped to 0.39 – 0.52 mmol/l due to chelation. An initial fast drop of ionized calcium was observed during the first 20 min of infusion followed by a fluctuation leading to a further drop until recumbency. Pre-infusion [Ca2+] between tests does not correlate with the amount of EDTA required to induce involuntary recumbence. Total calcium concentration measured by atomic absorption remained almost constant during the first 100 min of infusion but declined gradually when the infusion was prolonged. The concentration of inorganic phosphate declined gradually in a fluctuating manner until recumbency. Magnesium concentration remained constant during infusion. Such electrolyte responses during infusion were comparable to those in spontaneous milk fever. The standardized infusion technique might be useful in future experimental studies

    ExoMol line lists - III. An improved hot rotation-vibration line list for HCN and HNC

    Get PDF
    A revised rotation-vibration line list for the combined hydrogen cyanide (HCN)/hydrogen isocyanide (HNC) system is presented. The line list uses ab initio transition intensities calculated previously and extensive data sets of recently measured experimental energy levels. The resulting line list has significantly more accurate wavelengths than previous ones for these systems. An improved value for the separation between HCN and HNC is adopted, leading to an approximately 25 per cent lower predicted thermal population of HNC as a function of temperature in the key 2000 to 3000 K region. Temperature-dependent partition functions and equilibrium constants are presented. The line lists are validated by comparison with laboratory spectra and are presented in full as supplementary data to the article and at www.exomol.com

    Saddle point localization of molecular wavefunctions

    Get PDF
    The quantum mechanical description of isomerization is based on bound eigenstates of the molecular potential energy surface. For the near-minimum regions there is a textbook-based relationship between the potential and eigenenergies. Here we show how the saddle point region that connects the two minima is encoded in the energy levels and wave functions of the potential energy surface

    Effect of Anionic Salt and Highly Fermentable Carbohydrate Supplementations on Urine pH and on Experimentally Induced Hypocalcaemia in Cows

    Get PDF
    The objective of this experiment was to determine the effect of dietary grain on calcium homeostasis. Six rumen-fistulated dairy cows with 3 or more previous lactations and no history of parturient paresis were randomly assigned to a sequence of diets in a crossover study with 4 periods of 10 days each. Dietary treatments were: A control ration consisting of wrap grass silage alone (1), the control ration supplemented with ammonium chloride and ammonium sulphate salt solution (2), control ration following a period with supplementation (3) and control ration supplemented with increasing amounts of barley from 4 to 10 kg/cow per day, expected to produce subclinical rumen acidosis (4). Daily intake of the diets was adjusted to 14 kg DM/cow per day. On day 11, the calcium-regulating mechanisms in cows were challenged until recumbency by a standardized intravenous EDTA infusion and cows were left to recover spontaneously. Anion supplementation and the feeding of highly fermentable carbohydrate lowered urine pH below 7.0 due to subclinical acidosis. During spontaneous recovery from EDTA induced hypocalcaemia, the cows more quickly regained a whole blood free calcium concentration of 1.00 mmol/L if they had most recently been supplemented with either anionic salts or with increasing amounts of barley, as compared to the basic ration. It is concluded that so-called slug-feeding or 'steaming up' with highly fermentable carbohydrates before parturition in milk fever susceptible cows enhanced calcium homeostasis similar to the effect seen in cows on anionic diets

    An experimentally-accurate and complete room-temperature infrared HCN line-list for the HITRAN database

    Get PDF
    A hydrogen cyanide line list (MOMeNT-90) developed for the HITRAN spectroscopic database covering 0–7500 cm−1 range (λ>1330 nm) is presented. The line list is a combination of the variationally calculated line intensities with line centers obtained from experimentally derived energy levels. There are four features of this line list which distinguishes it from the previously calculated ones. First, the intensities are variationally calculated using a new, high-accuracy potential energy surface (PES) obtained via fitting the PES using experimental energy levels. Second, a new ab initio dipole moment surface was calculated at a high level of quantum chemical theory. Based on the wave functions calculated with the new PES and use of the new dipole moment surface, line intensities are reported which of similar accuracy to those obtained experimentally. Third, the calculated states are mapped to the existing complete set of experimental eigenenergies, resulting in an assigned and complete HCN line list down to the HITRAN intensity threshold of 10−34 cm/molecule. Fourth, extensive validation of the line list is provided through line-by-line comparisons of the results with measured HCN spectra which confirms the accuracy of the intensities used to construct the line list. The line list is augmented with parameters needed to calculate line widths for pressure-dependent simulations

    Spectroscopic characterization of isomerization transition states

    Get PDF
    Transition state theory is central to our understanding of chemical reaction dynamics. We demonstrate a method for extracting transition state energies and properties from a characteristic pattern found in frequency-domain spectra of isomerizing systems. This pattern—a dip in the spacings of certain barrier-proximal vibrational levels—can be understood using the concept of effective frequency, ω[superscript]eff. The method is applied to the cis-trans conformational change in the S[subscript 1] state of C[subscript 2]H[Subscript 2] and the bond-breaking HCN-HNC isomerization. In both cases, the barrier heights derived from spectroscopic data agree extremely well with previous ab initio calculations. We also show that it is possible to distinguish between vibrational modes that are actively involved in the isomerization process and those that are passive bystanders.National Science Foundation (U.S.) (NSF Graduate Research Fellowship DGE 1144083)Alexander von Humboldt-Stiftung (Feodor Lynen fellowship)United States. Department of Energy (Grant DE-FG0287ER136
    corecore