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Transition state theory is central to our understanding of chemical reaction

dynamics. We demonstrate here a method for extracting transition state ener-

gies and properties from a characteristic pattern found in frequency domain

spectra of isomerizing systems. This pattern, a dip in the spacings of certain
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barrier-proximal vibrational levels, can be understood using the concept of ef-

fective frequency, ωeff . The method is applied to the cis-trans conformational

change in the S1 state of C2H2 and the bond-breaking HCN-HNC isomeriza-

tion. In both cases, the barrier heights derived from spectroscopic data agree

extremely well with previous ab initio calculations. We also show that it is pos-

sible to distinguish between vibrational modes that are actively involved in the

isomerization process and those that are passive bystanders.

The central concept of the transition state in chemical kinetics is familiar to all students

of chemistry. Since its inception by Arrhenius (1) and later development into a full theory

by Eyring, Wigner, Polanyi, and Evans (2–5), the idea that the thermal rate depends primarily

on the highest point along the lowest energy path from reactants to products has remained

essentially unchanged. Most of chemical dynamics is now firmly based on this idea of the

transition state, notwithstanding the emergence of unconventional reactions such as roaming

(6, 7), where a photodissociated atom wanders before abstracting from the parent fragment.

Despite the clear importance of the transition state to the field of chemistry, direct experimental

studies of the transition state and its properties are scarce (8).

Here we report the observation of a vibrational pattern, a dip in the trend of quantum level

spacings, which occurs at the energy of the saddle point. This phenomenon is expected to

provide a generally applicable and accurate method for characterizing transition states. Only

a subset of vibrational states exhibit a dip; these states contain excitation along the reaction

coordinate and are barrier-proximal, meaning that they are more susceptible to the effects of

the isomerization barrier than other states. Experimental evidence for this concept is drawn

from our studies of two prototypical systems, the HCN↔HNC isomerization and the cis-trans

conformational change in the first electronically excited singlet state of acetylene.
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Effective frequency and the isomerization dip We must first describe effective frequency,

ωeff , the central quantity in our model for the spectroscopic signature of isomerizing systems.

In a one-dimensional system, the effective frequency is the derivative of the energy with respect

to the quantum number n

ωeff(n) =
∂E

∂n
=

∆E

∆n
(1)

where ωeff is evaluated discretely for quantized systems. ωeff is a dynamic quantity that can

change as excitation increases, unlike those quantities such as harmonic frequency, ω, or funda-

mental frequency, ν, often listed as molecular constants. As such, it is a very useful diagnostic

of the behavior of the system.

Applications of effective frequency date back a long way. For example, the effective fre-

quencies ωeff(n) of a state of a diatomic molecule are its vibrational intervals, which decrease to

zero at the dissociation limit. The sum of the effective frequencies is therefore the dissociation

energy. In most cases it is not possible to observe the ωeff(n) all the way to the dissociation

limit, but a linear extrapolation to ωeff = 0 allows a very good estimate of the dissociation en-

ergy, notwithstanding nonlinearities in the trend of vibrational intervals near dissociation. This

is the basis of the Birge-Sponer plot (9) where the area under a graph of the vibrational intervals,

ωeff(n), against n gives the dissociation energy. Leroy and Bernstein (10) have given a protocol

for extrapolating the effective frequencies, which takes account of the exact long-range shape

of the vibrational potential near dissociation. This procedure is found to give very accurate

dissociation energies (11).

Effective frequencies also play a large part in our understanding of quasilinear molecules. A

quasilinear molecule has a non-linear equilibrium geometry, but a comparatively small potential

barrier to linearity. The pattern of the lowest vibrational levels is that of a bent molecule, but

with increasing bending vibrational excitation this changes smoothly into the pattern for a linear

molecule, vibrating with large amplitude. Dixon (12) has modeled a quasilinear potential as a
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two-dimensional harmonic oscillator perturbed by a Gaussian hump at the linear configuration,

and calculated its energy levels. These levels may be assigned vibrational (v) and angular

momentum (K) quantum numbers. (13) If the vibrational intervals (effective frequencies) for a

given K value are plotted against v, they pass through a minimum at the energy of the potential

barrier, thereby allowing determination of its value. The depth of this “Dixon dip” is greatest

for K = 0, and decreases with increasing K. The reason is that the angular momentum results

in aK-dependent centrifugal barrier at the linear configuration, which the molecule must avoid.

We now illustrate the concept of effective frequency in more detail, with the four types of

potential shown in Fig. 1. For the harmonic oscillator,

ωeff =
∂

∂n

[
ω

(
n+

1

2

)]
= ω, (2a)

and
∂ωeff

∂n
= 0, (2b)

indicating that the dynamics of the system do not change as a function of energy.

For a Morse oscillator, where the potential is V (r) = De[1− e−ar]2,

ωeff =
∂

∂n

[
ω

(
n+

1

2

)
+ x

(
n+

1

2

)2
]

= ω + x+ 2nx, (3a)

and
∂ωeff

∂n
= 2x (3b)

where x is always negative. This linear decrease of ωeff with n reflects the migration of the

Morse wavefunctions toward the softer outer turning point. When ωeff reaches zero at the dis-

sociation limit, it becomes clear that the Morse and harmonic oscillators display very different

dynamics.

Simple expressions for ωeff and
∂ωeff

∂n
cannot be derived for the other cases in Fig. 1, but

these illustrate the most important feature even more clearly: the effective frequency goes to
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Figure 1: Effective frequency plots below their associated model potentials. From left: a)
harmonic oscillator, b) Morse oscillator, c) symmetric double minimum potential, and d) asym-
metric double minimum potential. In the top panels, the quantized energy levels are marked
with dashed lines. In the bottom row, the classical ωeff is shown as a solid line, with the quan-
tum level spacings plotted as open circles vs. E (the mid-point energy for each interval). In (c),
the upper and lower series of circles correspond to the vibrational level spacings and tunneling
splittings, respectively. In (d), the ωeff curve and energy levels for the second minimum are
shown in red, and the quantum level spacings are overlaid on the ωeff curves as triangles and
squares.
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zero at the energy of each stationary point on the potential. Classically, this can be understood

by imagining a ball released to roll on a double minimum surface. If the ball starts on one side

at exactly the height of a local maximum, it will reach that maximum with zero kinetic energy

and stop. Because the ball never returns, the oscillation period is infinite and the frequency

therefore is zero. We see immediately that this applies to the Morse oscillator as well – ωeff

reaches zero at the dissociation limit, which is a horizontal asymptote of V (r). It is clear

that this phenomenon is quite general and that zeros or abrupt changes in ωeff signal important

changes in the dynamics of the system.

In their quantum and semi-classical analysis of highly excited states of HCP, Jacobson and

Child (14) mention a dip in ωeff as the signature of an approach to a saddle point. Because the

HCP↔HPC potential energy surface exhibits some unusual features (HPC is a saddle point,

rather than a second minimum), and is not a true isomerization (15), the observed ωeff trend

was categorized as a peculiar “Dixon dip”, rather than recognized as the universal signature

proposed here. Similarly, the onset of internal rotation in the ground state of SiC2 (16) is not an

isomerization, though the ideas presented here are applicable to it. More generally, the behavior

of systems as they encounter stationary points has been investigated from other perspectives

as well (17–20). For our purposes, it suffices that this dip in ωeff provides a marker of the

chemically relevant transition state energy, as we demonstrate here with experimental data,

following an explanation of the method for measuring transition state energies and a discussion

of its application.

A model for measurement of the transition state energy In order to determine the transition

state energy, we propose the following semi-empirical formula for ωeff as a function of energy,

E, defined as the mid-point energy for each vibrational interval:

ωeff(E) = ω0

(
1− E

ETS

)1/m

ω0, ETS ≥ 0; 2 ≤ m ≤ ∞; E ≤ ETS (4)
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Figure 2: Relationship between potential shape and ωeff illustrated by (a) effective frequency
curves and (b) the corresponding potentials as a function of the shape parameter m in Eq. 4.

where ω0 is the effective frequency at E = 0 for the progression being analyzed, ETS is the

energy of the transition state, and m is a parameter related to the barrier shape. For the Morse

oscillator (Fig. 1b), m = 2 analytically (21–23), ETS = De, the dissociation energy, and

ω0 = ω, the harmonic frequency. Equation 4 can be regarded as a generalization of the Morse

formula wherem is allowed to take values greater than 2. The formula also satisfies the required

physical boundary conditions of a limiting harmonic frequency ω0 at E = 0 and ωeff = 0 at

E = ETS .

The dependence of the m parameter on potential shape is illustrated in Fig. 2 (See supple-

mentary text for further details.). The lower limit is m = 2, the Morse oscillator, where the

asymptote is approached infinitesimally with r. The other limit is a truncated harmonic oscilla-

tor where the potential abruptly becomes constant at ETS . In such a case ωeff falls instantly to

zero and m =∞.

Dissociation vs. isomerization The physical arguments presented here regarding the behavior

of ωeff vs. E (and therefore Eq. 4) pertain only up to E = ETS . Above that energy, ωeff can

either remain at zero for an unbound system (as with the Morse oscillator), or rise again (in a

bound system). The above-barrier behavior of ωeff depends on the outer walls of the potential,
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and is not described by Eq. 4. The mth root form of Eq. 4 suggests the presence of a branch

point at ETS , which separates the above-barrier and below-barrier eigenspectra into two distinct

energy regions (19, 24).

A semiclassical analysis of long-range interatomic potentials of the formD−C/rn was per-

formed by LeRoy and Bernstein (10) over 40 years ago. They derived an expression that relates

the change in energy per quantum number (i.e. the effective frequency) near the dissociation

limit to a quantity proportional to (1 − E/D)(n+2)/2n. This expression is clearly similar to our

effective frequency formula, but the two models treat dynamically and mathematically distinct

regimes. For inverse power law potentials where n = {1, 2, 3, 4, . . .}, the corresponding m

values are {2/3, 1, 6/5, 4/3, . . .}. In the limit n→∞, the effective m value approaches 2 from

below. In contrast, our model has a lower limit of m = 2. In other words, these two similar

effective frequency expressions treat essentially disjoint classes of potentials. The key differ-

ence is how the stationary point (or dissociation limit) is approached. For long-range potentials

with inverse power law forms, the stationary point at r →∞ is approached only polynomially.

Our treatment considers potentials where stationary points are local maxima and therefore ap-

proached over a finite domain. The common system, the Morse potential, has a stationary point

at r → ∞, but approaches it exponentially (that is, faster than any power law,) and is in some

sense simultaneously long-range and local. Graphically, the dynamical distinction corresponds

to positive curvature (LeRoy-Bernstein) vs. negative curvature (our model) on a Birge-Sponer

plot, with the linear plot of the Morse oscillator dividing the two regimes.

Practical application It remains to discuss how best to extract the desired saddle point energy

from spectroscopically measured quantities. From the frequency domain spectrum we measure

the energies of a series of quantized vibrational levels, and take the average E and difference

ωeff of adjacent level energies to obtain a set of (E,ωeff) data points (25). Equivalently, time
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domain spectroscopy may provide alternative or more direct ways to obtain vibrational periods

or frequencies vs. energy, especially for larger systems. A plot of these (E,ωeff) data reveals

any dynamical trend in ωeff , either constant, linear, or nonlinear. If a stationary point is present

within the data range of E, the plot will dip to a minimum as the energy of the stationary point

is approached, though in a bound quantum system there will never be a point with ωeff equal to

zero.

In principle, only this bare minimum of information is necessary to apply Eq. 4. A value for

ETS can then be obtained, which in favorable cases should have an uncertainty of 5 to 10% of

the effective frequency, depending on the extent and quality of the input data. High resolution

and detailed spectroscopic assignments are not a requirement, nor are ab initio calculations,

although these can help identify the active vibrations and the nature of the transition state. Even

in larger molecules, where full spectroscopic and computational analyses are impractical, the

problem must simplify to a very small number of vibrational modes that form the reaction

coordinate and lead to the transition state. These active vibrations reveal themselves by their

isomerization dips.

In order to demonstrate the capabilities of our method, we now apply our model to two

prototypical isomerizing molecules, HCN and the S1 state of C2H2. These systems have been

spectroscopically characterized in great detail, such that we can apply the isomerization dip

method and Eq. 4 to them with confidence. We emphasize that the levels of knowledge and

quality of data available for these systems are not necessary in general for the application of

our method. Furthermore, despite the small sizes of HCN and C2H2, they exhibit many of the

complications expected in larger molecules. Only brief backgrounds need be given here for

these molecules, as the cited references provide full details.
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The examples of S0 HCN↔HNC and S1 C2H2 The potential surface for the electronic

ground state of the [H,C,N] system has two minima, the linear HCN and HNC isomers, sepa-

rated by approximately 5200 cm−1. The reaction coordinate of the bond-breaking HCN-HNC

isomerization corresponds mainly to the ν2 bending vibration, and the barrier to isomeriza-

tion is nearly 17000 cm−1 above the HCN minimum. Extensive experimental term values for

both isomers are available up to 10000 cm−1 above the HCN minimum (26). To continue

the analysis up to and beyond the barrier energy, we used spectroscopically assigned ab initio

eigenenergies (26–28). In Ref. (26), levels with high bending excitation were reported to devi-

ate unexpectedly from effective Hamiltonian predictions, reflecting the presence of the double

well potential.

The S1 state of C2H2 supports cis and trans conformers, with the cis conformer lying ap-

proximately 2672 cm−1 above the trans. As illustrated in Fig. 3, the transition state is planar

and nearly half-linear (29). The bare saddle point energy is calculated to be 4979 cm−1 above

the trans minimum, but with an uncertainty of hundreds of cm−1, even for the most accurate

calculations to date (30). A torsional isomerization path might have been expected, on the basis

of cis-trans isomerizations in other molecules, but this is not found here.

The height of the barrier compared to the fundamental frequencies leads us to expect at least

some normal vibrational structure, even in the shallower cis well. Thus far, several cis vibra-

tional levels have been identified, in reasonable agreement with ab initio calculations (31–33).

In the trans well, almost all of the vibrational levels below the barrier have been assigned (33).

Of the six trans conformer vibrational modes, four are fairly well-behaved: the Franck-Condon

active vibrations ν2 (CC stretch) and ν3 (trans-bend) (34), and the CH stretching modes ν1 and

ν5 (35, 36). On the other hand, a large portion of the trans vibrational manifold can only be

understood within the framework of bending polyads Bn=(v4+v6) (37), because of the Darling-

Dennison and Coriolis interactions between the low frequency ungerade bending modes, ν4
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Figure 3: Salient features of the cis-trans isomerization in S1 C2H2. The barrier height and
energy difference between the two conformers are shown, as well as the combination of trans
normal modes (q3 and q6) that corresponds to the isomerization coordinate.

(torsion) and ν6 (cis-bend).

Despite the success of the polyad model in reproducing the level structures associated with

the bending vibrations, there are disturbing exceptions. As illustrated in Fig. 13 of Ref. (38),

the series of 3nB2 polyads exhibits a surprising trend, with the energy of the lowest member of

the polyad decreasing rapidly relative to the energies of the other polyad members. Although

inexplicable by conventional models, this occurrence turns out to be intimately related to the

isomerization dynamics discussed here.

Determination of the barrier height We now apply the isomerization dip concept, and in

particular Eq. 4, to the barrier proximal energy levels discussed in the previous section.

Figure 4 shows the results of the pure bending
(
ωeff

2

)
effective frequency analysis for HCN/HNC.

The barrier heights for both wells are found to be within 1% of the ab initio values. In or-

der to compare ETS to calculated barrier heights, either the ab initio zero point energy must
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Figure 4: The ωeff
2 (` = 0) effective frequency analysis for HCN and HNC. Shown are experi-

mental data points (blue), Dunham-based predictions using only experimental data (green), and
the assigned ab initio data points (red) (26). (See supplementary text for details.) The fitted
ETS parameters using Eq. 4 (blue) are compared with the ab initio barrier heights (red). A one
dimensional cut through the PES is shown as a red dashed line. The unusual shapes of the HNC
potential and ωeff plot near 5000 cm−1 result from interaction with a low-lying excited diabatic
electronic state (44).

be subtracted from the calculated barrier height, or an effective zero point energy must be

added to the fitted ETS value. (See supplementary text for details.) A consistency check of

the HCN/HNC analysis stems from another dynamical parameter that affects ωeff
2 and the ef-

fective barrier height: the vibrational angular momentum, `. The fitted ETS barrier heights are

summarized in Table S5 and, as expected, the barrier height increases approximately quadrati-

cally with `.

Figure 5a shows plots of ωeff
3 and ωeff

6 for the 3n62 series of C2H2, where Eq. 4 can be seen to

fit the observed data very well. (Details of the fits can be found in Tables S1 and S2.) The 3n62

levels experience the effects of the barrier most strongly, whereas the 3n levels are completely

uninfluenced by it, because a combination of q3 and q6 is required to access the transition state

geometry. Both ωeff
3 and ωeff

6 can be obtained as a function of v6 as well, reading the array

of term values in Table S2 horizontally rather than vertically. The same {E, ωeff} data are

12



1000 2000 3000 4000

400

600

800

1000

 

 

E

�
e
�

�e�
6

�e�
3

(a)
�

e
�

1000 2000 3000 4000

700

800

900

1000

E

�e�
3 : 3n61

�e�
3 : 3n62

�e�
3 : 3n

(b)

�
e
�

1000 2000 3000 4000

700

800

900

1000

E

�e�
3 : 3n42

�e�
3 : 3n62

�e�
3 : 3n

(c)

Figure 5: The ωeff analysis for S1 C2H2. The dip is expected near the ab initio value of 4979
cm−1. Data from Tables S1 to S3. (a) Experimental ωeff for the 3n62 levels, shown with fits to
Eq. 4. ωeff

3 is obtained directly from the progression of 3n62 levels, and ωeff
6 is derived from the

3n62 and 3n61 levels at a given n3. (b) Experimental ωeff
3 for the 3n62 levels as compared to ωeff

3

for other progressions with varying quanta of ν6, shown with fits to Eq. 4. The 3n62 series has
the sharpest dip, in close analogy to the K = ` = 0 series in the “Dixon dip” (12). (c) ωeff

3 plots
for the 3n, 3n42, and 3n62 progressions. The 3n42 series follows the normal behavior of the 3n

levels, despite the isomerization dip observed in the 3n62 levels. This shows that the torsional
mode ν4 is not involved in the isomerization process at these energies.

obtained, but in different sets.

Reaction path analysis Several possibilities arise when the ωeff analysis is extended to ad-

ditional vibrational progressions. The first, shown in Fig. 5c, is that of differentiating between

isomerization pathways. We have noted already that certain progressions, such as the 3n of

trans C2H2, show no sign of an isomerization dip. Here we see that surprisingly, the 3n42 levels

exhibit the same ωeff
3 as the 3n, from which we conclude that the torsional cis-trans isomer-

ization pathway is closed at these energies. This observation is consistent with the harmonic

behavior in ν4 noted in Ref. (37). Furthermore, the very strong interactions between ν4 and ν6,

as well as the inevitable evolution of the torsion as the molecule straightens, would have led

us to predict some kind of nonlinear behavior of the ωeff
3 from the 3n42 levels. The absence of

any such effects implies that the torsion is a spectator mode independent of the isomerization

occurring in ν3 and ν6. Unlike in many other molecules, torsion does not play a role in this
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cis-trans isomerization. It appears that the residual π-bond, despite its incomplete complement

of substituents, leads to the preference for in-plane isomerization. (Fig. 3).

The clear distinction between spectator modes and isomerizing modes suggests that other

properties of the saddle point may be obtainable from ωeff analysis. Consider a separable system

that consists of an asymmetric double minimum in x, and a harmonic oscillator in y: V (x, y) =

V (x)+ky2/2. Because the Hamiltonian is separable, E = Ex +Ey, and therefore ωeff
x does not

depend on y, in the same way that ωeff
3 does not depend on v4 in trans S1 C2H2. This means that

the ωy of the transition state is unchanged from that of the minimum. We can then imagine a

case where
∂2V (x, y)

∂y2
varies with x. In such a case it is possible to extract a value for ωy of the

transition state from the spacing of the ωeff
x curves, or by plotting ωeff

y directly, including data

from above the saddle point energy. (39) To give a specific example from a rotational degree of

freedom, a quadratic fit of the `-dependence of the 0v20 HCN barrier height (Table S5) yields(
A−B

)
TS

= 11.1(9) cm−1 for the transition state, which agrees well with the ab initio value

of 12.2 cm−1. These hitherto unmeasurable transition state rotational constants and frequencies,

in addition to the saddle point energy, are critical inputs to the expression for the rate constant

in transition state theory (2).

The ideas about spectator modes articulated here are confirmed by analysis of the HCN/HNC

stretching mode progressions - neither shows any dip up to 19000 cm−1 above the HCN mini-

mum. Furthermore, the shifts in the fitted barrier heights for v2 progressions built upon excita-

tion in ν1 and ν3 match well with the 1D pseudopotentials Vv1,v3(θ) from Ref. (40–42) and the

stretching frequencies (Table S4).

Implications and outlook The method described here provides qualitative and quantitative

information about the isomerization mechanism and the transition state solely on the basis of

experimental data. The reaction coordinate can be identified from the isomerization dips shown
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by active vibrations, and quantitative information about the energy, vibrational frequencies and

rotational constants of the transition state becomes available. It is especially promising that

this analysis stems entirely from a small subset of the vibrational levels; in other words, a

full vibrational analysis is not necessary. Special states exist that encode chemically important

information, though it may not always be easy to recognize them.

The most exciting outcome of the excellent fits using Eq. 4 is the determination of the tran-

sition state energies. The uncertainties in ETS are at least as good as what is currently available

from theory. In many cases experiments might only confirm theoretical predictions, but we ex-

pect them to sharpen our understanding, and the potential value of our method goes well beyond

validating theory. For example, we envision that this approach is a step toward establishing ki-

netics on the same firm experimental foundation as that already enjoyed by thermochemistry,

where precise information is broadly available. This could aid in modeling complex reaction

networks as well as provide benchmarks for theoretical calculations.

The next stages in developing the concepts of isomerization dip and effective frequency will

require more experimental data for model systems as well as refinement of the basic ideas. For

example, it is clear that ωeff is a multi-dimensional quantity, which could be treated by suitable

multidimensional analysis. However it is not clear yet how to define E in many dimensions.

On the experimental side, the MgNC↔ MgCN isomerization (43) is similar to HCN↔ HNC

though with a much lower barrier; with higher resolution than has been used so far, it should

be possible to get detailed information on the isomerizing levels all the way to the barrier and

beyond.

The most promising prospect is the application of this approach to larger molecular systems.

For example, the principles presented in this work will provide a framework for experimental

characterization of the transition state and detailed mechanism in other reactions, such as cis-

trans isomerization, as epitomized by stilbene, and 1,2 hydrogen shifts, which are ubiquitous
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in organic chemistry. Remarkably little frequency domain spectroscopy has been done at the

high energies relevant to chemical kinetics. Partly this is because it was not clear previously

what could be learned, and partly it is because the spectra rapidly become very complicated at

such energies, so it is difficult to recognize the important patterns. In time it is likely that new

classes of experiments will sample the information about isomerization that is encoded in time-

or frequency-domain spectra of larger molecules. Our hope is that the concepts and examples

described here will be viewed as templates for the characterization of isomerizing systems,

thereby challenging and guiding spectroscopists to attack similar problems of chemical interest.
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Figure Captions

Figure 1: Effective frequency plots below their associated model potentials. From left: a)

harmonic oscillator, b) Morse oscillator, c) symmetric double minimum potential, and d) asym-

metric double minimum potential. In the top panels, the quantized energy levels are marked

with dashed lines. In the bottom row, the classical ωeff is shown as a solid line, with the quan-

tum level spacings plotted as open circles vs. E (the mid-point energy for each interval). In (c),

the upper and lower series of circles correspond to the vibrational level spacings and tunneling

splittings, respectively. In (d), the ωeff curve and energy levels for the second minimum are

shown in red, and the quantum level spacings are overlaid on the ωeff curves as triangles and

squares.

Figure 2: Relationship between potential shape and ωeff illustrated by (a) effective frequency

curves and (b) the corresponding potentials as a function of the shape parameter m in Eq. 4.

Figure 3: Salient features of the cis-trans isomerization in S1 C2H2. The barrier height and

energy difference between the two conformers are shown, as well as the combination of trans

normal modes (q3 and q6) that corresponds to the isomerization coordinate.

Figure 4: The ωeff
2 (` = 0) effective frequency analysis for HCN and HNC. Shown are experi-

mental data points (blue), Dunham-based predictions using only experimental data (green), and

the assigned ab initio data points (red) (26). (See supplementary text for details.) The fitted

ETS parameters using Eq. 4 (blue) are compared with the ab initio barrier heights (red). A one

dimensional cut through the PES is shown as a red dashed line. The unusual shapes of the HNC

potential and ωeff plot near 5000 cm−1 result from interaction with a low-lying excited diabatic

electronic state (44).

Figure 5: The ωeff analysis for S1 C2H2. The dip is expected near the ab initio value of 4979

cm−1. Data from Tables S1 to S3. (a) Experimental ωeff for the 3n62 levels, shown with fits to

Eq. 4. ωeff
3 is obtained directly from the progression of 3n62 levels, and ωeff

6 is derived from the
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3n62 and 3n61 levels at a given n3. (b) Experimental ωeff
3 for the 3n62 levels as compared to ωeff

3

for other progressions with varying quanta of ν6, shown with fits to Eq. 4. The 3n62 series has

the sharpest dip, in close analogy to the K = ` = 0 series in the “Dixon dip” (12). (c) ωeff
3 plots

for the 3n, 3n42, and 3n62 progressions. The 3n42 series follows the normal behavior of the 3n

levels, despite the isomerization dip observed in the 3n62 levels. This shows that the torsional

mode ν4 is not involved in the isomerization process at these energies.

22



Supplementary Materials

Properties of Barrier-Proximal States In the next two sections we supply reasons why

barrier-proximal levels such as the 3n62 levels of Ã 1Au C2H2 deserve special consideration.

These characteristics also serve as ways to identify such levels, but are certainly not their only

signatures (45).

Energetic Considerations One direct and effective test for identifying barrier-proximal levels

is that they do not follow traditional Dunham-type (46) effective Hamiltonians. By inverting the

usual assignment procedure and ignoring states that fit to conventional models, we can filter for

levels that belong to isomerization dip progressions - a counterintuitive method that we applied

to great effect in analyzing the HCN/HNC data set. For example, in S1 C2H2 the 3n62 levels do

not fit well in normal or even extended Heff models, deviating increasingly from their predicted

positions along the series (47). This fact alone suggests that they belong to a special class of

levels with unusual behavior. The idea of local mode behavior is closely related, wherein certain

states in polyads with a distinctive energy level pattern exhibit qualitatively new dynamics. Two

well-known examples are the stretching overtones in water (48), where quanta in the symmetric

and antisymmetric stretching normal modes combine to form states with local bond stretching

(and eventually bond breaking) character, and the pure bending polyads in S0 acetylene, where

the bending normal modes evolve into “local benders” en route to isomerization to vinylidene

(49, 50). In those examples, as in our case, the states at the low energy extreme of the polyads

fall lower in energy as the polyad number increases, and become isolated. Here, however,

our special class of states represents a fundamentally different phenomenon. It is not a result

of the polyad-forming interaction, but is rather caused by a separate effect, which might be

termed “polyad-breaking”. The unequivocal lines of evidence for this distinction are that here

the special states do not emerge as a function of the polyad quantum number, and also that the
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Darling-Dennison parameter K4466 varies considerably with v3, as shown by the rotational fits

to the different polyads.

Figure S1: An array of S1 trans C2H2 wavefunctions from the calculations in Ref. (30), plotted
in a two-dimensional 6 CCH plane where the trans and cis minima exist in the upper left/lower
right and lower left/upper right quadrants. The zero point level is shown in the upper left panel,
with v3 increasing to the right, and v6 increasing down each column. Note the delocalization
and nodal pattern distortion that correlates with combined {v3, v6} excitation.

Wavefunctions A second clue that the 3n62 levels are special can be found by inspecting

their wavefunctions. In Fig. S1, ab initio wavefunctions from the calculations of Ref. (30) are

shown for an array of {v3, v6} states. Most of the functions have the expected nodal structure of

two-dimensional harmonic oscillator wavefunctions, with only mild perturbations. Levels with

increasing quanta in both ν3 and ν6, and especially the 3n62 series shown in the bottom row,

however, are delocalized across the trans and cis minima on the potential surface. The reason is

that the 3n62 states are participants in an isomerization dip; they are barrier-proximal, meaning
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that their wavefunctions have considerable amplitude directed toward the transition state, and

that their energies feel the effect of the strongly anharmonic minimum energy isomerization

path.

An important point is that there is clear precedent for variation in the strength of the dip

between different progressions of states. In Dixon’s original paper (12), as mentioned above,

the series of levels with K or ` = 0 dipped most strongly, because the states with K > 0 must

avoid the centrifugal barrier about linearity. Just as the K = 0 states in the quasilinear case are

singularly effective at accessing the stationary point on the PES because they have no angular

momentum, so too in our case the set of barrier proximal 3n62 levels is the most effective at

reaching toward the isomerization transition state. (See Fig. 5b.) In both cases this access to

the stationary point is reflected by the sharpest dip as a function of energy for that specific set

of levels.

ωeff Fits and Input Data The following tables contain the input term values and fit results for

the dip analyses discussed in the main text.

As illustrated in Fig. 1, the quantum level spacings follow the classical ωeff curve closely,

except for slight deviations near the stationary point. (See Refs. (21, 24).) In the case of S1

C2H2, quantum mechanical tunneling effects appear as K-staggering distortions of the asym-

metric top level structure. (51,52) While these perturbations contain valuable information about

barrier width, for the purposes of deriving accurate vibrational term values for ωeff analysis, it is

necessary to deperturb them. Due to the size of the data set, the HCN/HNC term values have not

been deperturbed with respect to tunneling perturbations or anharmonic resonances. Therefore,

as described in more detail below, some data points at high E were excluded from the fits, in

addition to the points that are missing due to the energy cutoff of the ab initio eigenenergies.

Listed below in Table S3 are additional observed rotational transitions necessary to obtain the
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term values in Table S2.

Table S1: ωeff Fits to 3n6m Levels of S1 trans C2H2. All parameters in cm−1, except m, which
is dimensionless. Uncertainties are 2σ. The ωeff

6 data sets are constructed by taking the average
and difference of the energies of the 3n6m series listed and the 3n6m−1 levels.

Fit ω0 ETS m RMS
ωeff

3 : 3n 1058 ± 21 2e4 ± 2e5∗ 2.3 ± 19 3.4
ωeff

3 : 3n61 1039 ± 13 4845 ± 591 14.3 ± 6 0.65
ωeff

3 : 3n62 1030 ± 30 4692 ± 33 11.5 ± 3 1.5
ωeff

6 : 3n61 777.6 ± 2 5074 ± 83 6.3 ± 0.3 0.48
ωeff

6 : 3n62 796.6 ± 4 4846 ± 4 6.3 ± 0.2 0.90

∗Note that for the ωeff
3 : 3n fit the ETS value is not meaningful, since m should be fixed at 2 for this

Morse-like series.

S1 C2H2 Effective Frequency Analysis The fitted parameters confirm the expectations laid

out earlier. The barrier height obtained by adding ω6/2 (for reasons explained below in the

section on Zero Point Energy) to the 4692 cm−1 value for ETS is 5091 cm−1; this differs from

the ab initio value of 4979 cm−1 by only 2%, well within the ab initio uncertainty of a few

hundred wavenumbers. The ω0 values are in line with the experimentally known harmonic

frequencies and anharmonicities, and the m values fall in a range that seems sensible based on

Fig. 2.

HCN/HNC Effective Frequency Analysis Two different types of data were used for the

HCN/HNC ωeff analysis. The first data set is the product of assigning the eigenenergies (26)

generated by a high level variational ab initio calculation (27, 28), up to and above the iso-

merization barrier, to a maximum energy of 18000 cm−1. The second data set consists of ex-

perimental eigenenergies up to 10000 cm−1 from HOTGAME (Hot Gas Molecular Emission)

experiments of one of the authors (26, 57). Based on these term values (and those of 14 states

from Ref. (58)), Dunham-type effective Hamiltonians have been determined for HCN and HNC.
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Table S2: Term Values Used in the S1 C2H2 ω
eff Fits. All energies in cm−1. T0 and J=K=0

values used where available. See Ref. (30).

HHH
HHHv3

v6 0 1 2

0 0 768.26‡ 1531.02#

1 1047.55∗ 1785.53§ 2511.39∗∗

2 2077.71∗ 2778.76§ 3456.38∗∗

3 3088.14∗ 3739.98‖ 4339¶

4 4072.95∗ 4642.93¶ 4993.78¶

5 5042.78†

∗From Refs. (34, 53)
†From Ref. (53), but with a K-staggering of +6.31 cm−1 removed.
‡From Ref. (54)
§From Ref. (55).
‖From Ref. (33).
¶The term value for 3461 is based on our IR-UV spectra, with a very largeK-staggering of +27.63 cm−1

removed. The term value for 3362 is based on a K = 1 level observed at 46547 cm−1, with an estimated
effective A−B of 8 cm−1. The term value for 3462 combines corrected data from Ref. (53) with our H
atom action spectra (56); also, a K-staggering of −6.89 cm−1 has been removed.
#From Ref. (37).
∗∗From Ref. (38).
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Table S3: (a) Assigned lines of the 46656 cm−1 ∆ − Π subband of 3462, observed in H atom
action spectra (56). Values in cm−1.

K = 2− 1
J R Q P
1 46660.93
2 46662.84 46656.22
3 46664.65 46655.84 46649.19
4 46668.18 46655.16

(b) Assigned lines of the 46547 cm−1 K ′ = 1 − 0 subband of 3362. Values in cm−1. Blended
lines marked with *.

K = 1− 0
J R Q P
1 46550.93 46546.60
2 46553.23 46546.09
3 46554.82 46545.13 46539.20
4 46536.75
5 46533.65*

(c) 3461 K = 0− 2 sublevels.

K ′ T0 B 102q r.m.s.
0 46826.68 ± 0.028 1.0628 ± 0.0010 0.018
1 46867.29 0.026 1.0433 0.0019 4.16 ± 0.23 0.015
2 46878.59 0.089 1.0555 0.0064 −0.033 0.030 0.030

The K = 1− 0 interval minus (K = 2− 0)/4 gives a K-staggering of 28 cm−1. The usual Coriolis interactions
in B1 polyads are rendered negligible for our purpose here by the large ν3 − ν6 anharmonicity. q is the coefficient

of [J(J + 1)]K , with a positive value if the e levels are above the f in energy.

6



Using these effective Hamiltonians, the vibrational eigenenergies and ωeff
2 for both isomers have

been predicted up to the isomerization barrier. For HCN there is remarkable agreement with

the ab initio data set; the divergence of the predictions from the ab initio data for HNC will be

explained below. In the case of HCN, there are two reasons why the predicted effective frequen-

cies match the calculated ωeff derived from ab initio data. First, the `-dependence of states in

the effective Hamiltonian is very accurately described, due to the large number of `-subbands

detected in the emission spectra (up to v2 = 15 for ` > 0 states). Second, the differences

between the ab initio and predicted eigenenergies increase with bending excitation, but these

errors are partially compensated when calculating the effective frequency.

The generally excellent correspondence between the ab initio data set and the experimental

measurements gives us confidence that the spectroscopically assigned ab initio eigenenergies

are an appropriate tool for examining the dynamics of the [H,C,N] system. Consequently, we

have utilized this information to conduct the HCN and HNC ωeff analyses.

As mentioned above, for HNC the effective Hamiltonian ωeff does not follow the ab initio

ωeff (Fig. 4) because of interaction with a low-lying diabatic excited electronic state (44). To

compensate for the unusual form of the potential, an ad hoc Gaussian term has been added to

Eq. 4 for the HNC fits, and this issue does not appear to cause any major difficulties.

Table S5 lists the parameters of Eq. 4 determined in the effective frequency analysis for

HCN and HNC. In some cases, states are excluded due to perturbations or because they lie

above the maximum energy of the ab initio data set; progressions with high vibrational angular

momentum or multiple stretch excitations extend to higher energies and often exceed the 18000

cm−1 limit. For these fits the ωeff analysis is approximate, and based mainly on estimates of

the m parameter, which is then kept fixed. The ω0 parameter has been divided by two in the

HCN/HNC fits to correspond with the bending frequency.
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Table S4: Saddle point energies determined from the ` = 0 effective frequency fit analyses.
∆V1D are the barrier heights of the 1-dimensional effective bending potentials (40). Uncertain-
ties given in parentheses are 1σ.

HCN HNC
Fit ETS ∆V1D ETS −∆V1D ETS ∆V1D ETS −∆V1D

0v20 16695(17) 16344∗ 2.1% 11533(124) 10924∗ 5.6%
1v20 15872(21) 15597 1.7% 9950(215) 9811 1.4%
0v21 16220(1) 16241 0.1% 11542(270) 10881 6.1%

∗The bare ab initio barrier heights are 16798 and 11517 cm−1 for HCN and HNC, respectively. The
fitted ETS values agree to within 1%.

Table S5: Fitted ETS , m and ω0 parameters for the HCN and HNC effective frequency analysis.
Uncertainties in parentheses are 1σ, and values in brackets were fixed. Data from Table S6.

Fit ETS m ω0 ETS m ω0

v1v2v3, ` HCN HCN HCN HNC HNC HNC
0v20, ` = 0 16695( 17) 8.8(2) 712(1) 11533(124) [6.4] 474(3)
0v20, ` = 1 16764( 1) 8.8(2) 710(2)
0v20, ` = 2 16577( 7) 9.0(1) 710(1)
0v20, ` = 3 16743( 75) 8.7(3) 711(2)
0v20, ` = 4 16530( 3) 9.3(1) 710(1)
0v20, ` = 5 16683( 37) 9.0(2) 712(1)
0v20, ` = 6 17217( 74) 8.4(2) 715(1)
0v20, ` = 7 17146( 187) 8.6(4) 716(2)
0v20, ` = 8 17400( 142) 8.4(3) 718(2)
0v20, ` = 9 17605( 88) [8.6] 717(1)
0v20, ` = 10 17640( 59) 8.5(3) 720(3)
0v20, ` = 11 18046( 158) [8.6] 718(2)
0v20, ` = 12 18039( 58) [8.6] 721(2)
0v21, ` = 0 16220( 1) 9.8(4) 706(4) 11542(270) [6.4] 470(4)
1v20, ` = 0 15872( 21) 7.6(3) 699(4) 9950(215) [4.9] [474]
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Figure S2: Representative isomerization dip plots for HCN. As in Fig. 4, shown are experimen-
tal data points (blue), Dunham-based predictions using only experimental data (green), and the
assigned ab initio data points (red). (26)
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Zero-Point Energy Our model effective frequency expression, ωeff = ω0(1 − E/ETS)1/m,

is explicitly a function of E, the absolute vibrational energy referenced to the minimum of the

effective 1D potential. (E, obtained by averaging adjacent quantized eigenergies, is locally

approximately equal to E.) Spectroscopic measurements, however, provide only the relative

vibrational energy referenced to the zero-point energy of the potential, E0, such that E =

E0 + G, where G is the relative vibrational energy. It would be convenient to find an algebraic

expression for E0, in order to use the measured G values directly in the expression for ωeff.

Applying the method of semiclassical quantization, we can determine such an expression for

E0 in terms of ω0, ETS , and m that is self-consistent with our effective frequency ansatz Eq. 4.

We begin with the basic relation between the periodic frequency of 1D motion as a function

of energy, ω(E), and the classical action, J , of that periodic orbit

1

ω(E)
=
∂J

∂E
. (S1)

Applying WKB quantization to the classical action, we have the following integral relation for

the zero-point energy, E0, ∫ E0

0

dE
1

ω(E)
=

∫ E0

0

dE
∂J

∂E

= J(E0)

!
=

1

2
(S2)

(We have fixed the minimum of the potential at V = 0, such that J(E = 0) = 0.)

We now substitute our ωeff expression into the integrand and evaluate the integral:∫ E0

0

dE
1

ωeff =

∫ E0

0

dE
1

ω0

(
1− E

ETS

)−1/m

=
1

2
(S3)

⇒ 1

2
=

1

ω0

m

m− 1

(
ETS + (E0 − ETS)(1− E0/ETS)−1/m

)
(S4)
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Eq. S4 can be solved for E0, yielding

E0 = ETS

(
1−

[
1− ω0

2ETS

(
1− 1

m

)] m
m−1

)
(S5)

In Eq. S5, we have an expression for E0 in terms of the other model parameters that is self-

consistent with the ωeff model under semiclassical quantization.

This expression conforms to the expected limiting cases. For a harmonic oscillator (m →

∞), the expression becomes independent of m and ETS , giving

E0|m→∞ =
ω0

2
(S6)

For a Morse oscillator (m = 2), the evaluation is simple and yields

E0|m=2 =
ω0

2
− ω2

0

16ETS

, (S7)

which is the exact Morse result if ETS is identified with De.

The derivation above applies principally to one-dimensional cases, since otherwise the zero-

point energy is not separable into components parallel and perpendicular to the reaction coor-

dinate. Accordingly, in such cases we set the zero of energy at that of the vibrationless level for

fitting purposes. This implies that the fitted ETS excludes the zero point energy of the effective

isomerization path. (See Table S1 and the surrounding discussion.) The zero point energy of

the lowest frequency mode that participates in the isomerization is a good approximation to this

quantity, because the minimum energy isomerization path is always parallel to that mode at the

potential minimum. (59, 60)

The Meaning of m The effective frequency dip model given by Eq. 4 contains three indepen-

dent parameters, ω0, ETS , and m. The first two in this set have simple relations to the shape of

the potential energy surface: ωeff describes the curvature near the potential minimum and ETS

the transition state energy or barrier height.
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In this section, we show how the parameter m, originally introduced as an empirical shape

parameter (Fig. 2), can also be directly identified with a simple physical characteristic of the

potential surface. We begin with the standard Rydberg-Klein-Rees (RKR) inversion expression

r+(v)− r−(v) = 2

√
h̄2

2µ

∫ v

−1/2

1√
G(v)−G(u)

du (S8)

where r+ (r−) is the outer (inner) classical turning point of the 1D potential, µ is the effective

mass, v and u are vibrational quantum numbers (treated as continuous), and G(v) is the vibra-

tional energy as a function of v with G(v = −1
2
) = 0. It is convenient to change variables in

Eq. S8 from quantum numbers to vibrational energies. Letting G(u) = ε and G(v) = E yields

r+(E)− r−(E) = 2

√
h̄2

2µ

∫ E

0

1

ωeff(ε)

1√
E − ε

dε (S9)

where we have used the definition of ωeff(ε) ≡ ∂G(u)/∂u. Inserting our expression for ωeff(ε)

(Eq. 4) and defining the mass-weighted distance between turning points ∆(E) ≡ √µ[r+(E)−

r−(E)] we have

∆(E) =
√

2h̄2

∫ E

0

1

ω0(1− ε/ETS)1/m

1√
E − ε

dε (S10)

We now perform another change of variables to isolate the dimensioned quantities. Letting

x = ε/ETS and X = E/ETS , we obtain

∆(E) =

√
2h̄2ETS

ω0

∫ X=E/ETS

0

1

(1− x)1/m

1

(X − x)1/2
dx. (S11)

The dimensionless integral in Eq. S11 can be expressed relatively succinctly in terms of

the 2F1 hypergeometric functions. However, this general result is not particularly useful. To

determine the significance of the parameter m, we evaluate Eq. S11 at E = ETS (i.e. X = 1):

∆(E = ETS) =

√
2h̄2ETS

ω0

∫ 1

0

1

(1− x)
1
m

+ 1
2

dx (S12)

=

√
2h̄2ETS

ω0

[
(1− x)−

1
m

+ 1
2

1
m
− 1

2

]1

0

(S13)
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=

√
2h̄2ETS

ω0

1
1
2
− 1

m

. (S14)

This expression relates ∆(E = ETS), the mass-weighted distance between the classical

turning points at the energy of the barrier ETS , directly to m. Alternatively, for a given ETS ,

changing m varies the steepness of the ascent to the saddle point. In the limits m → 2 and

m → ∞, we have ∆ → ∞ and ∆ → 2
√

2ETS/(ω0/h̄), the expected results for a Morse

oscillator and harmonic oscillator, respectively. In the case of HCN, where the isomerization

path is symmetric about θ ↔ −θ, ∆(E = ETS) equals the distance between two symmetry-

equivalent transition state barriers and thus is twice the distance between the transition state

barrier and the potential minimum. In this way, we can analytically relatem to the isomerization

path distance, which in addition to ω0 and ETS , is another chemically relevant characteristic of

the potential energy surface.
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